

Article

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Connie C. Lu, and Jonas C. Peters

J. Am. Chem. Soc., **2004**, 126 (48), 15818-15832• DOI: 10.1021/ja046415s • Publication Date (Web): 10 November 2004 Downloaded from http://pubs.acs.org on April 5, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 7 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Connie C. Lu and Jonas C. Peters*

Contribution from the Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Received June 17, 2004; E-mail: jpeters@caltech.edu

Abstract: A zwitterionic palladium complex [[Ph₂BP₂]Pd(THF)₂][OTf] (1) (where [Ph₂BP₂] = [Ph₂B(CH₂PPh₂)₂]⁻) reacts with trialkylamines to activate a C-H bond adjacent to the amine N atom, thereby producing iminium adduct complexes [Ph₂BP₂]Pd(N,C: η^2 -NR₂CHR'). In all cases examined the amine activation process is selective for the secondary C-H bond position adjacent to the N atom. These palladacycles undergo facile β-hydride elimination/olefin reinsertion processes as evident from deuterium scrambling studies and chemical trap studies. The kinetics of the amine activation process was explored, and β -hydride elimination appears to be the rate-limiting step. A large kinetic deuterium isotope effect for the amine activation process is evident. The reaction profile in less polar solvents such as benzene and toluene is different at room temperature and leads to dimeric {[Ph₂BP₂]Pd}₂ (4) as the dominant palladium product. Low-temperature toluene-d₈ experiments proceed more cleanly, and intermediates assigned as [Ph₂BP₂]Pd(NEt₃)(OTf) and the iminium hydride species [[Ph₂BP₂]Pd(H)(Et₂N=CHCH₃)][OTf] are directly observed. The complex (Ph₂-SiP₂)Pd(OTf)₂ (14) was also studied for amine activation and generates dimeric [(Ph₂SiP₂)Pd]₂[OTf]₂ (16) as the dominant palladium product. These collective data are discussed with respect to the mechanism of the amine activation and, in particular, the influence that solvent polarity and charge have on the overall reaction profile.

Introduction

Exploiting transition metals to functionalize tertiary amines via initial C-H bond activation is a growing area of synthetic interest.¹ For instance, Murai and co-workers described a catalytic process for the carbonylation of tertiary amines at a position adjacent to an amine N atom using a rhodium(I) precursor.² This system requires amine substrates with pendant directing groups to chelate the metal catalyst. More recently, Murahashi et al. reported a ruthenium catalyst for the cyanation of tertiary amines without the requirement of directing groups.³ Iminium adducts of ruthenium, while not observed, were proposed as key intermediates. Precedent for this type of reactivity had been previously demonstrated at osmium by the

Harman group,⁴ who provided spectroscopic data to support the generation of an Os(II) η^2 -iminium hydride complex via β -hydride elimination upon reduction of an Os(III) amine complex. Murahashi also invoked η^2 -iminium hydrides of Pd-(II) as intermediates in trialkylamine exchange reactions catalyzed by palladium black at 200 °C (NR $_2^1R^2 \rightarrow NR_3^1 + NR_3^2$ + $NR_{2}^{1}R^{2}$ + $NR_{2}^{1}R_{2}^{2}$, where $R^{1} \neq R^{2}$).⁵ Another example of a catalytic transformation of tertiary amines comes from Goldman's group with the report that iridium(III) dihydride precursors can mediate the dehydrogenation of tertiary amines to produce enamines in the presence of a H₂-acceptor (i.e., NEt₃ + alkene \rightarrow Et₂NCH=CH₂ + alkane).⁶

Previous work from our lab has concerned mechanistic aspects of aromatic C-H bond activations mediated by a zwitterionic platinum(II) center.⁷ With an interest in extending this effort, we turned to developing a related palladium system. In this report a reactive Pd(II) complex is described, [[Ph₂BP₂]-Pd(THF)₂][OTf] (1), where [Ph₂BP₂] represents the bis(phosphino)borate ligand [Ph₂B(CH₂PPh₂)₂]⁻. This system stoichiometrically activates a variety of trialkylamines at a secondary

^{(1) (}a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443-2465.

⁽b) Doye, S. Angew. Chem., Int. Ed. 2001, 40, 3351–3353.
(a) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882–12283. For Rh-catalyzed 1. Mind, S. J. Mi, Chem. Soc. 2000, 122, 1502 12205 16 Recatalyted carbenoid insertions into C-H bonds at to N, see: (b) Davies, H. M. Li, Hansen, T.; Hopper, D. W.; Panaro, S. A. J. Am. Chem. Soc. 1999, 121, [6509–6510. (c) Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper,
 D. W. J. Am. Chem. Soc. 2003, 125, 6462–6468. (d) Davies, H. M. L.;
 Venkataramani, C. Angew. Chem., Int. Ed. 2002, 41, 2197–2199. For a related example of imine activation, see: (e) Sakaguchi, S.; Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534-2536.

^{(3) (}a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312-15313. For other Ru examples, see: (b) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. **2001**, 123, 10935–10941. (c) Chatani, N.; Fukuyama, T.; Tatamidani, H.; Kakiuchi, F.; Murai, S. J. Org. Chem. **2000**, 65, 4039–4047.

^{(4) (}a) Barrera, J.; Orth, S. D.; Harman, W. D. J. Am. Chem. Soc. 1992, 114, 7316-7318. (b) Orth, S. D.; Barrera, J.; Rowe, S. M.; Helberg, L. E.; Harman, W. D. *Inorg. Chim. Acta* **1998**, *270*, 337-344.

⁽a) Murahashi, S.-I.; Hirano, T.; Yano, T. J. Am. Chem. Soc. **1978**, 100, 348–350. (b) Murahashi, S.-I.; Yoshimura, N.; Tsumiyama, T.; Kojima, T. J. Am. Chem. Soc. 1983, 105, 5002-5011.

⁽⁶⁾ Zhang, X.; Fried, A.; Knapp, S.; Goldman, A. S. Chem. Commun. 2003, 2060–2061.

 ^{(7) (}a) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2001, 123, 5100-5101.
 (b) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 8870-8888.

Figure 1. Relationship between amine-to-iminium ion and alcohol-toketone oxidation reactions.

C-H position adjacent to the amine N atom. Formal proton loss accompanies the activation process, and structurally unusual iminium adduct complexes of palladium are obtained.

This reaction system is particularly well suited to mechanistic examination, and we have therefore undertaken such a study. We attempt to address the reaction's overall selectivity and suggest a plausible operational mechanism. Our data indicate that the processes may be mechanistically germane to the mode of palladium-catalyzed alcohol oxidations⁸ (Figure 1) and also to the in situ reduction of Pd(II) precursors by trialkyamines⁹ in Pd(0)-catalyzed reactions, as, for example, in the Heck reaction.¹⁰ These processes are also of potential relevance to β -hydride elimination processes of palladium amides¹¹ and to β -hydride eliminations that generate imines from secondary amines.¹²

Experimental Section

General Considerations. All manipulations were carried out using standard Schlenk or glovebox techniques under a dinitrogen atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by thorough sparging with N_2 gas, followed by passage through an activated alumina column. Diethyl ether, tetrahydrofuran, petroleum ether, and benzene were typically tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective oxygen and moisture removal. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. The solvents were dried over activated 3 Å molecular sieves and degassed by freezepump-thaw cycles prior to use. The preparation of Et2NC(H)=CH2,13 diisopropyl(2-propenyloxymethyl)amine,14 (COD)PdCl2,15 Ph2SiP2,7 and [NBu₄][Ph₂BP₂]¹⁶ was carried out following literature procedures. Amines and o-phenylpyridine were purchased from Aldrich, dried over CaH₂, distilled or vacuum transferred, and stored over activated 3 Å molecular sieves. The reagents (PhCN)₂PdCl₂ and AgOTf were purchased from Strem; the latter was dried under vacuum with heating

- (9) See: Trzeciak, A. M.; Ciunik, Z.; Ziółkowski, J. J. Organometallics 2002, 21, 132–137 and references therein.
- (10) (a) Tsuji, J. Palladium Reagents and Catalysts—Innovations in Organic Synthesis; John Wiley & Sons: New York, 1995; pp 125–128. (b) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066 and references therein.
- (11) For a review, see: (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067. See also: (b) Hartwig, J. F.; Richards, S.; Barañano, D.; Paul, F. J. Am. Chem. Soc. 1996, 118, 3626–3633.
- (12) (a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978–13980. (b) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1348–1350.
- (13) Laban, G.; Mayer, R. Z. Chem. 1967, 7, 12-13.
- (14) Arenz, T.; Frauenrath, H.; Raabe, G.; Zorn, M. *Liebigs Ann. Chem.* **1994**, 931–942.
- (15) Drew, D.; Doyle, J. R. Inorg. Synth. 1990, 28, 346–349.
 (16) Peters, J. C.; Thomas, J. C. Inorg. Synth. 2004, 34, 8–14.

at 80 °C for 12 h, and the former was used without further purification. The reagent NaCN (99%) was dried under vacuum with heating at 80 °C. tert-Butyl isocyanide was dried over 3 Å molecular sieves and used without further purification. Elemental analyses were performed by Desert Analytics, Tucson, AZ. A Varian Mercury-300 NMR spectrometer and a Varian Inova-500 NMR spectrometer were used to record ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra unless otherwise stated. ¹H and ¹³C NMR chemical shifts were referenced to residual solvent. Proton peaks were assigned based on TOCSY-1D and ³¹P-decoupled ¹H NMR studies. ³¹P NMR chemical shifts are reported relative to an external standard of 85% H₃PO₄. ¹⁹F NMR chemical shifts are reported relative to an external standard of hexafluorobenzene. IR measurements were obtained with a KBr solution cell using a Bio-Rad Excalibur FTS 3000 spectrometer controlled by Bio-Rad Merlin Software (v. 2.97) set at 4 cm⁻¹ resolution. X-ray diffraction experiments were performed at the Beckman Institute Crystallographic Facility on a Bruker Smart 1000 CCD diffractometer.

[[Ph2BP2]Pd(THF)2][OTf] (1). A THF solution of AgOTf (72.9 mg, 71 µmol) was added to a THF suspension of {[Ph₂BP₂]Pd(µ-Cl)}₂ (0.200 g, 142 µmol). The reaction was stirred for 7 h and filtered through glass wool. The bright yellow filtrate was dried in vacuo for 9 h to give a yellow foam-powder (0.252 g, 92% yield). ¹H NMR $(C_6D_6, 500 \text{ MHz}) \delta$ 7.41 (dd, J = 7.0 and 12.0 Hz, 8H, H_a of PPh₂), 7.23 (br d, J = 7.0 Hz, 4H, H_o of BPh₂), 7.09 (t, J = 7.5 Hz, 4H, H_m of BPh₂), 7.04 (tt, J = 1.0 and 7.5 Hz, 2H, H_p of BPh₂), 6.97 (dd, J =6.5 and 8.0 Hz, H_p of PPh₂), 6.89 (app t, 8H, H_m of PPh₂), 3.44 (m, 8H, O(CH_2CH_2)₂), 1.95 (br dd, J = 5.0 and 14.5 Hz, 4H, CH_2PPh_2), 1.26 (m, 8H, O(CH₂CH₂)₂); ¹³C NMR (d_6 -benzene, 75 MHz) δ 160.3 (br, C_{ipso} of BPh₂), 133.1 (app t, J = 5.4 Hz, C_o of PPh₂), 132.6 (C_o of BPh₂), 131.9 (C_p of PPh₂), 129.8 (d, J = 55.8 Hz, C_{ipso} of PPh₂), 129.0 (app t, J = 5.4 Hz, C_m of PPh₂), 127.7 (C_m of BPh₂), 124.0 (C_p of BPh₂), 118.7 (d, J = 319 Hz, CF_3), 69.9 (O(CH_2CH_2)₂), 25.9 (O(CH_2CH_2)₂), 18.6 (br, CH₂PPh₂); ³¹P NMR (C₆D₆, 121 MHz) δ 48.2; ¹⁹F NMR (C₆H₆, 282 MHz) δ -73.5. Anal. Calcd for C₄₇H₅₀BF₃O₅P₂PdS: C, 58.61; H, 5.23; N, 0. Found: C, 58.66; H, 5.18; N, 0.08.

[NBu4][[Ph2BP2]PdCl2] (2). A THF solution (10 mL) of (COD)-PdCl₂ (0.600 g, 2.10 mmol) was added dropwise to a stirring suspension of [NBu₄][Ph₂BP₂] (1.694 g, 2.10 mmol) in THF (13 mL). The reaction mixture immediately became homogeneous and turned burnt orange. After stirring for 30 min, all volatiles were removed in vacuo. The resulting orange oil was taken up in benzene to precipitate the product as a light yellow crystalline solid. The solids were collected on a frit and washed with benzene and petroleum ether to give light yellow 2 (0.410 g, 40% yield). ¹H NMR (d_6 -acetone, 500 MHz) δ 7.56 (m, 8H, H_o of PPh₂), 7.24 (app t, J = 7.0 Hz, 4H, H_p of PPh₂), 7.11 (td, J =1.5 and 7.5 Hz, 8H, H_m of PPh₂), 6.85 (br d, J = 6.5 Hz, 4H, H_o of BPh₂), 6.70 (app t, J = 7.5 Hz, 4H, H_m of BPh₂), 6.65 (tt, J = 1.5 and 7.5 Hz, 2H, H_p of BPh₂), 3.35 (m, 8H, N(CH₂CH₂CH₂CH₃)₄), 1.76 (br d, J = 10.5 Hz, 4H, CH_2PPh_2), 1.73 (m, 8H, N($CH_2CH_2CH_2CH_3$)₄), 1.38 (sextet, J = 7.5 Hz, 8H, N(CH₂CH₂CH₂CH₃)₄), 0.95 (t, J = 7.5Hz, 12H, N(CH₂CH₂CH₂CH₃)₄); ¹³C NMR (d_6 -acetone, 125 MHz) δ 163.3 (br, C_{ipso} of BPh₂), 135.5 (dd, *J* = 4.3 and 55.6 Hz, C_{ipso} of PPh₂), 134.5 (m, Co of PPh2), 132.7 (Co of BPh2), 129.8 (Cp of PPh2), 127.7 (m, C_m of PPh₂), 126.7 (C_m of BPh₂), 122.6 (C_p of BPh₂), 59.3 (t, J =2.4 Hz, N(CH₂CH₂CH₂CH₃)₄), 24.4 (N(CH₂CH₂CH₂CH₃)₄), 21.6 (br, CH₂PPh₂), 20.3 (N(CH₂CH₂CH₂CH₃)₄), 13.9 (N(CH₂CH₂CH₂CH₃)₄); ³¹P NMR (d_6 -acetone, 121 MHz) δ 35.46. Anal. Calcd for C₅₄H₇₀BCl₂-NP₂Pd: C, 65.96; H, 7.18; N, 1.42. Found: C, 65.83; H, 7.60; N, 1.63.

{[**Ph₂BP₂]Pd(\mu-Cl)**₂ (**3**). A THF solution of PdCl₂(NCPh)₂ (1.4856 g, 3.834 mmol) was added rapidly to a stirring THF solution of [NBu₄][Ph₂BP₂] (3.0900 g, 3.834 mmol). The orange-yellow solution was filtered through Celite and dried in vacuo. The residue was washed thoroughly with Et₂O to give pale yellow solids, which by ³¹P NMR was a mixture of compounds **2** and **3**. The solids were dissolved in THF (150 mL) in a 300 mL of RBF with a stir bar, and NaBPh₄ (1.3123 g, 3.834 mmol) was added in the dark. After stirring for 8 h in the

⁽⁸⁾ For mechanistic considerations pertaining to these types of reactions, see:
(a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750-6755. (b) Mueller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005-7013. (c) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810-3813. (d) Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179-4181. (e) Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179-4181. (e) Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766-767. (f) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem. Soc. 2002, 124, 8202-8203. (g) ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Adv. Synth. Catal. 2002, 344, 355-369. (h) Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 4482-4483. (i) Noronha, G.; Henry, P. M. J. Mol. Catal. A: Chem. 1997, 120, 75-87. (j) For a review on this topic, see: Muzart, J. Tetrahedron 2003, 59, 5789-5816. (k) Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 11278.

dark, yellow solids precipitated from the brown solution. The first crop of solids were collected and washed sparingly with THF and a 1:1 THF/Et₂O solution. To remove NaCl, the solids were dissolved in CH₂-Cl₂ and filtered through Celite. The bright yellow solution was dried in vacuo to give yellow crystalline solids. A second crop of product was collected from the concentrated brown filtrate at -30 °C. The crops were combined to give 1.911 g of **3** (73% yield). ¹H NMR (CDCl₃, 300 MHz) δ 7.30–7.18 (m, 12H, H_p and H_o of PPh₂), 7.07 (t, *J* = 7.8 Hz, 8H, H_m of PPh₂), 6.91–6.82 (m, 10H, aryl H's of BPh₂), 1.79 (br d, *J* = 10.5 Hz, 4H, CH₂PPh₂); ¹³C NMR (CDCl₃, 125 MHz) δ 161.4 (br, C_{ipso} of BPh₂), 133.3 (m, C_o of PPh₂), 132.1 (C_o of BPh₂), 131.5 (d, *J* = 56.0 Hz, C_{ipso} of PPh₂), 130.7 (C_p of PPh₂), 128.1 (m, C_m of PPh₂), 126.8 (C_m of BPh₂), 123.0 (C_p of BPh₂), 1.77 (br, CH₂PPh₂); ³¹P NMR (CDCl₃, 121.5 MHz) δ 43.07. Anal. Calcd for C₇₆H₆₈B₂Cl₂P₄-Pd: C, 64.71; H, 4.86; N, 0.00. Found: C, 64.80; H, 4.83; N, <0.05.

[Ph2BP2]Pd(o-phenylpyridine)OTf (5). To a bright yellow THF solution of 1 (75.0 mg, 78.0 μ mol) was added *o*-phenylpyridine (11.1 μ L, 84.0 μ mol). The solution immediately turned off-white and slightly turbid. Petroleum ether (5 mL) was added to precipitate solids. The white solids were collected and washed liberally with Et2O. The solids were dried in vacuo to give 69 mg of a pale yellow powder (91% yield). Complex 5 is fluxional in solution at room temperature. ¹H NMR (CDCl₃, 300 MHz, -40 °C) δ 8.35 (d, J = 4.8 Hz, 1H, H_o of pyr), 7.69-7.52 (m, 12H, aryl), 7.32-7.07 (m, 10H, aryl), 6.84 (t, 2H, J = 6.4 Hz, H_p of BPh₂), 6.72–6.67 (m, 12H, aryl), 6.24 (br d, J = 7.5 Hz, 2H, aryl), 2.55 (d, J = 13.5 Hz, 1H, CHH'PPh₂), 1.93 (d, J = 14 Hz, 1H, CHH'PPh₂), 1.65 (d, J = 14 Hz, 1H, CHH'P'Ph₂), 1.53 (d, J = 13.8 Hz, 1H, CHH'P'Ph₂); ³¹P NMR (CDCl₃, 121 MHz, -40 °C) δ 46.3 (d, J = 20 Hz), 35.3 (d, J = 20 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, -40 °C) δ -81.6. Anal. Calcd for C₅₀H₄₃BF₃NO₃P₂PdS: C, 61.65; H, 4.45; N, 1.44. Found: C, 61.80; H, 4.21; N, 1.54.

[Ph₂BP₂]Pd(N,C:η²-NⁱPr₂CHCH₃) (6). Compound 6 was prepared with NⁱPr₂Et using a procedure identical to that used for compound 7 (68.0 mg, 82% yield). ¹H NMR (C₆D₆, 300 MHz) δ 7.32–7.50 (m, 14H, aryl H), 7.00-7.14 (m, 16H, aryl H), 3.38 (app quintet d, J = 1.8 and 6.9 Hz, 1H, PdNCHCH₃), 2.95 (septet, J = 6.0 Hz, 1H, $N(CHMe_2)C'HMe_2)$, 2.74 (septet, J = 6.0 Hz, 1H, $N(CHMe_2)C'HMe_2)$, 2.18–2.42 (m, 4H, CH_2PPh_2 and $C'H_2P'Ph_2$), 0.88 (d, J = 6.9 Hz, 3H, $N(CHMe_2)C'HMe_2)$, 0.835 (d, J = 6.3 Hz, 3H, $N(CHMe_2)C'HMe_2)$, 0.73 (td, J = 9.6 and 15.9 Hz, 3H, PdNCHCH₃), 0.50 (d, J = 5.4 Hz, 6H, N(CHMe₂)C'HMe₂); ^{13}C NMR (CDCl₃, 125 MHz) δ 163.8 (br, C_{ipso} and C'_{ipso} of BPh₂), 141.5 (d, J = 24.3 Hz, C_{ipso} of PPh₂), 139.1 (d, J = 35.4 Hz, C'_{ipso} of PPh₂), 137.9 (d, J = 29.3 Hz, C_{ipso} of P'Ph₂), 137.1 (d, J = 40.5 Hz, C'_{ipso} of P'Ph₂), 133.9 (d, J = 31.5 Hz, C_o of PPh_2), 133.3 (d, J = 12.7 Hz, $C_{o'}$ of PPh_2), 133.0 (C_o of BPh_2), 132.6 $(C_{o'} \text{ of BPh}_2)$, 132.1 (d, J = 11.6 Hz, $C_o \text{ of P'Ph}_2)$, 132.0 (d, J = 10.8Hz, $C_{o'}$ of P'Ph₂), 129.0 (d, J = 2.0 Hz, C_p of PPh₂), 128.9 (d, J = 1.9Hz, $C_{p'}$ of PPh₂), 128.4 (d, J = 2.3 Hz, C_p of P'Ph₂), 128.1 (d, J = 1.5Hz, $C_{p'}$ of P'Ph₂), 128.0 (d, J = 9.2 Hz, C_m of PPh₂), 127.7–127.9 (m, C_{m'} of PPh₂, C_m and C_{m'} of P'Ph₂), 126.2 (C_m of BPh₂), 126.1 (C_{m'} of BPh₂), 122.3 (C_p of BPh₂), 122.2 ($C_{p'}$ of BPh₂), 62.6 (dd, J = 13.8 and 56.7 Hz, PdN(CHMe)), 54.6 (N(CHMe₂)₂), 50.4 (N(C'HMe₂)₂), 26.1 (N(CHMe2)2), 24.8 (N(CHMe2)2), 23.4 (N(C'HMe2)2), 21.2 (N(C'HMe'₂)₂), 20.5-22 (br m, CH₂PPh₂ and C'H₂PPh₂), 15.9 (dd, J = 2 and 5.3 Hz, PdN(CHMe)); ³¹P NMR (CDCl₃, 121 MHz) δ 32.1 (d, J = 32.0 Hz), 14.1 (d, J = 32.0 Hz). Anal. Calcd for C₄₆H₅₂BNP₂-Pd: C, 69.23; H, 6.57; N, 1.76. Found: C, 68.62; H, 6.77; N, 1.77.

[Ph₂BP₂]Pd(N,C: η^2 -NEt₂CHCH₃) (7). Compound 1 (100.0 mg, 103.9 μmol) and NEt₃ (290 μL, 2.081 mmol) were dissolved in 8 mL of THF. The reaction mixture turned from yellow to a burnt orange. After 3 h, all volatiles were removed in vacuo, and 10 mL of petroleum ether was added to precipitate a peach-colored powder and wash away the excess amine. The solids were dissolved in 15 mL of benzene and flashed through a silica plug. The pale pink filtrate was dried in vacuo to give light pink crystalline solids (78.0 mg, 98% yield). ¹H NMR (C₆D₆, 300 MHz) δ 7.62 (br d, J = 6.9 Hz, H₀ of BPh₂), 7.11–7.41

(m, 14H, aryl H), 6.97-7.00 (m, 12H, aryl H), 2.97 (app hextet, J =6.0 Hz, 1H, PdNCHCH₃), 2.46 (septet d, J = 3.6 and 6.9 Hz, 1H, N(CHH'Me)Et', 2.17-2.45 (m, 7H, N(CHH'Me)C'HH'Me, CH₂PPh₂, and C'H₂P'Ph₂), 0.75 (td, J = 8.1 and 10.2 Hz, 3H, PdNCHCH₃), 0.47 (m, 6H, N(CH₂Me)C'H₂Me); $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 163.4 (br, C_{ipso} and C'_{ipso} of BPh₂), 140.7 (d, J = 26.1 Hz, C_{ipso} of PPh₂), 139.2 (d, J = 34.3 Hz, C'_{ipso} of PPh₂), 139.1 (d, J = 28.0 Hz, C_{ipso} of $P'Ph_2$), 138.3 (d, J = 37.8 Hz, C'_{ipso} of $P'Ph_2$), 133.6 (C_o of BPh₂), 133.2 (d, J = 13.1 Hz, C_o of PPh₂), 133.1 (C_{o'} of BPh₂), 132.8 (d, J =12.7 Hz, $C_{0'}$ of PPh₂), 132.34 (d, J = 13.2 Hz, C_{0} of P'Ph₂), 132.31 (d, J = 11.6 Hz, $C_{0'}$ of P'Ph₂), 128.8 (d, J = 2.3 Hz, C_p of PPh₂), 128.62 (d, J = 1.9 Hz, $C_{p'}$ of PPh₂), 128.59 (d, J = 1.5 Hz, C_p of P'Ph₂), 128.2 (d, J = 2.0 Hz, $C_{p'}$ of P'Ph₂), 127.95 (d, J = 6.2 Hz, C_m of PPh₂), 127.8–127.9 (m, $C_{m'}$ of PPh₂, C_m and $C_{m'}$ of P'Ph₂), 126.4 (C_m of BPh₂), 126.1 (C_{m'} of BPh₂), 122.73 (C_p of BPh₂), 122.66 (C_{p'} of BPh₂), 64.3 (dd, J = 13.5 and 57.9 Hz, PdN(CHMe)), 52.2 (s, N(CH₂Me)), 45.6 (s, N(C'H₂Me)), 20.6 (br m, CH₂PPh₂ and C'H₂PPh₂), 16.1 (app t, J = 3.5 Hz, PdN(CHMe)), 13.1 (s, N(CH₂Me)), 12.5 (s, N(CH₂Me')): ³¹P NMR (C₆D₆, 121 MHz) δ 32.2 (d, J = 35.7 Hz), 15.7 (d, J = 35.7 Hz). Anal. Calcd for C₄₄H₄₈BNP₂Pd: C, 68.63; H, 6.28; N, 1.82. Found: C, 68.82; H, 5.99; N, 1.88.

[Ph₂BP₂]Pd(N,C:η²-NCy₂CHCH₃) (8). Compound 1 (200.0 mg, 207.86 µmol) and NEtCy₂ (0.96 mL, 4.17 mmol) were dissolved in THF. After stirring for 3 h, the solution was dried in vacuo. The residue was washed with petroleum ether, benzene, and acetonitrile. The remaining pink powder was dissolved in CH₂Cl₂ and filtered through Celite (69 mg, 38% yield). Single crystals suitable for X-ray diffraction studies were grown from vapor diffusion of petroleum ether into a CH2-Cl₂ solution of 8 at -30° C. ¹H NMR (CDCl₃, 300 MHz) δ 7.11-7.36(m, 24H, aryl H), 6.80-6.93 (m, 6H, aryl H), 3.38 (app quintet d, J = 1.1 and 2.9 Hz, 1H, PdNCHCH₃), 2.79 (app q, J = 4.9 Hz, 1H, NCH(CH₂)₅), 1.08–2.07 (m, 25H, aliphatic H's), 0.96 (td, J = 5.4 and 9.0 Hz, 3H, PdNCHCH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 164.2 (br, C_{ipso} and C'_{ipso} of BPh₂), 141.6 (d, J = 23.9 Hz, C_{ipso} of PPh₂), 139.6 (d, J = 34.6 Hz, C'_{ipso} of PPh₂), 137.7 (d, J = 28.8 Hz, C_{ipso} of P'Ph₂), 137.2 (d, J = 38.2 Hz, C'_{ipso} of P'Ph₂), 133.96 (d, J = 13.4 Hz, C_o of PPh₂), 133.4 (d, J = 13.2 Hz, $C_{0'}$ of PPh₂), 133.1 (C_{ρ} of BPh₂), 132.7 $(C_{o'} \text{ of BPh}_2)$, 131.88 (d, J = 10.7 Hz, $C_o \text{ of P'Ph}_2$), 131.85 (d, J =11.2 Hz, $C_{o'}$ of P'Ph₂), 129.0 (d, J = 2.0 Hz, C_p of PPh₂), 128.9 (d, J= 1.9 Hz, $C_{p'}$ of PPh₂), 128.4 (d, J = 2.4 Hz, C_p of P'Ph₂), 128.0 (d, J = 9.2 Hz, C_m of PPh₂), 127.9 (d, J = 1.5 Hz, $C_{p'}$ of P'Ph₂), 127.72 (d, J = 8.8 Hz, $C_{m'}$ of PPh₂), 127.70 (d, J = 10.1 Hz, C_m of P'Ph₂), 127.68 (d, J = 8.0 Hz, $C_{m'}$ of P'Ph₂), 126.2 (s, C_m of BPh₂), 126.1 (s, $C_{m'}$ of BPh₂), 122.3 (C_p of BPh₂), 122.2 ($C_{p'}$ of BPh₂), 64.5 (dd, J =13.4 and 56.7 Hz, PdN(CHMe)), 63.8 (N(CH(CH₂)₅)), 59.9 (d, J =3.1 Hz, N(C'H(C'H₂)₅)), 36.5 (Cy), 35.4 (Cy), 35.2 (Cy), 32.71 (Cy), 26.7 (Cy), 26.4 (Cy), 26.22 (Cy), 26.18 (Cy), 25.5 (2 overlapping s, Cy), 20.4–21.9 (br m, CH_2PPh_2 and $C'H_2PPh_2$), 15.7 (d, J = 4.3 Hz, PdN(CHMe)); ³¹P NMR (CDCl₃, 121 MHz) δ 31.8 (d, J = 31.1 Hz), 13.2 (d, J = 31.1 Hz). Anal. Calcd for C₅₂H₆₀BNP₂Pd: C, 71.12; H, 6.89; N, 1.59. Found: C, 70.77; H, 6.65; N, 1.36.

[Ph₂BP₂]Pd(N,C: η^2 -NCH₃CH(CH₂)₃) (9). Compound 9 was prepared with *N*-methylpyrrolidene using a procedure identical to that used for compound 7 (67 mg, 82% yield). Single crystals suitable for X-ray diffraction studies were grown from vapor diffusion of petroleum ether into a THF solution of 9 at -30 °C. ¹H NMR (C₆D₆, 300 MHz) δ 7.63 (br t, J = 6.3 Hz, 4H, aryl H), 7.38 (dd, J = 8.7 and 9.6 Hz, 2H, H_o of PPhPh'), 7.11–7.30 (m, 12H, aryl H's), 6.96–6.99 (m, 12 H, aryl H's), 2.86 (m, 1H, PdN(Me)CH(CH₂)₃), 2.75 (m, 1H, aliphatic H of pyrrolidene), 2.32–2.25 (m, 2H, CHH'PPh₂), 2.14–2.10 (m, 2H, C'HH'P'Ph₂), 2.07 (d, J = 3.3 Hz, 3H, NMe), 1.71–1.87 (m, 2H, aliphatic H's of pyrrolidene), 1.56 (m, 1H, aliphatic H of pyrrolidene), 1.21–1.37 (m, 2H, aliphatic H's of pyrrolidene); ¹³C NMR (CDCl₃, 125 MHz) δ 163.6 (br, C_{ipso} and C'_{ipso} of PPh₂), 140.2 (d, J = 26.0 Hz, C_{ipso} of PPh₂), 139.4–138.8 (m, C'_{ipso} of PPh₂, C_{ipso} and C'_{ipso} of P'Ph₂), 133.4 (C_o of BPh₂), 133.0 (d, J = 13.1 Hz, C_o of

PPh₂), 132.8 (d, J = 13.7 Hz, C_{o'} of PPh₂), 132.2 (d, J = 13.1 Hz, C_o of P'Ph₂), 131.9 (d, J = 11.4 Hz, C_{o'} of P'Ph₂), 128.9 (C_p of PPh₂), 128.6 (C_{p'} of PPh₂), 128.5 (C_p of P'Ph₂), 128.3 (C_{p'} of P'Ph₂), 128.0 – 127.9 (m, C_m and C_{m'} of PPh₂, C_m and C_{m'} of P'Ph₂), 126.3 (C_m of BPh₂), 126.2 (C_{m'} of BPh₂), 122.8 (C_p and C_{p'} of BPh₂), 69.5 (dd, J = 14.6 and 61.8 Hz, PdN(Me)CH), 60.3 (N(CH₂)), 45.5 (d, J = 3.8 Hz, NMe), 31.6 (CH₂ of pyrrolidene), 26.1 (CH₂ of pyrrolidene), 20.2 (br m, CH₂-PPh₂), 17.9 (br m, C'H₂PPh₂); ³¹P NMR (C₆D₆, 121 MHz) δ 32.7 (d, J = 39.5 Hz), 16.9 (d, J = 39.5 Hz). Anal. Calcd for C₄₃H₄₄BNP₂Pd: C, 68.50; H, 5.88; N, 1.86. Found: C, 68.53; H, 5.96; N, 2.06.

 $[Ph_2BP_2]Pd(N,C:\eta^2-NCH_3CH(CH_2)_4)$ (10). Compound 10 was prepared with N-methylpiperidene using a procedure identical to that used for compound 7. Yield 54.1 mg, 69%. ¹H NMR (C_6D_6 , 300 MHz) δ 7.67 (br d, 2H, J = 6.9 Hz, H_o of BPhPh'), 7.61 (br d, 2H, J = 6.0Hz, $H_{o'}$ of BPhPh'), 7.31–7.39 (m, 8H, H_o and $H_{o'}$ of PPhPh' and P'PhPh'), 7.25 (t, J = 6.9 Hz, 2H, H_p and H_{p'} of BPhPh'), 7.10-7.14 (m, 4H, H_m and $H_{m'}$ of BPhPh'), 6.95–6.98 (m, 12 H, H_m , $H_{m'}$, H_p , and H_{p'} of PPhPh' and P'PhPh'), 2.98 (m, 1H, PdN(Me)CH(CH₂)₄), 2.29-2.42 (m, 3H, CHH'PPh₂ and CHH'P'Ph₂), 2.11 (br d, J = 12.3 Hz, 1H, CHH'P'Ph₂), 2.04 (d, J = 3.3 Hz, 3H, NMe), 1.82 (app q, J = 12.3Hz, 1H, aliphatic H of piperidene), 1.71 (m, 1H, aliphatic H of piperidene), 1.07-1.15 (m, 4H, aliphatic H's of piperidene), 0.86-0.88 (m, 2H, aliphatic H's of piperidene); ¹³C NMR (CDCl₃, 125 MHz) δ 163.4 (br, C_{ipso} and C'_{ipso} of BPh₂), 140.7 (d, J = 25.9 Hz, C_{ipso} of PPh₂), 139.5 (d, J = 28.2 Hz, C'_{ipso} of PPh₂), 139.1–139.5 (m, C_{ipso} and C'_{ipso} of P'Ph₂), 133.7 (C_o of BPh₂), 133.1 (C_{o'} of BPh₂), 132.9 (d, J = 13.1 Hz, C_o of PPh₂), 132.2 (m, C_o of PPh₂, C_o and C_o of P'Ph₂), 128.8 (Cp of PPh2), 128.6 (Cp' of PPh2), 128.5 (Cp of P'Ph2), 128.3 (Cp' of P'Ph₂), 127.9-128.0 (br m, C_m and C_{m'} of PPh₂, C_m and C_{m'} of P'Ph₂), 126.4 (C_m of BPh₂), 126.1 (C_{m'} of BPh₂), 122.8 (C_p and C_{p'} of BPh₂), 66.9 (dd, J = 13.8 and 60.4 Hz, PdN(Me)CH), 51.4 (N(CH₂)), 49.7 (NMe), 22.6 (CH₂ of piperidene), 22.4 (CH₂ of piperidene), 20.7 (br m, CH₂PPh₂), 17.8 (br m, C'H₂PPh₂), 16.6 (CH₂ of piperidene); ³¹P NMR (C₆D₆, 121 MHz) δ 32.7 (d, J = 39.5 Hz), 16.9 (d, J = 39.5Hz). Anal. Calcd for C44H46BNP2Pd: C, 68.81; H, 6.04; N, 1.82. Found: C, 67.93; H, 6.39; N, 1.41.

[Ph₂BP₂]Pd(N,C:η²-NⁱPr₂CH₂) (11). Compound 1 (100.4 mg, 104.4 μ mol) and diisopropyl(2-propenyloxymethyl)amine (357.4 mg, 2.088 mmol) were dissolved in THF. The reaction mixture turned from yellow to orange-red immediately but faded to pale yellow after stirring for 5 min. After 1 h, all volatiles were removed in vacuo, and petroleum ether was added to precipitate the powder and wash away the excess amine. The solids were dissolved in benzene and flashed through a silica plug. The filtrate was dried in vacuo to give pale yellow solids (63.7 mg, 78% yield). ¹H NMR (C₆D₆, 300 MHz) δ 7.55 (br d, J =6.9 Hz, H_o of BPh₂), 7.32-7.44 (m, 8H, aryl H's), 7.08-7.18 (m, 6H, aryl H's), 6.98-7.02 (m, 12H, aryl H's), 2.61 (m, 2H, N(CHMe₂)₂), 2.51 (app t, J = 5.1 Hz, 2H, PdNCH₂), 2.29 (m, 4 H, CH₂PPh₂), 0.70 $(d, J = 6.9 \text{ Hz}, 6H, N(CHMeMe')_2), 0.59 (d, J = 6.0 \text{ Hz}, 6H,$ N(CHMeMe')₂); ¹³C NMR (C₆D₆, 75 MHz) δ 163.8 (v br, C_{ipso} of BPh₂), 140.6 (d, J = 28.7 Hz, C_{ipso} of PPh₂), 139.8 (d, J = 38.3 Hz, C_{ipso} of P'Ph₂), 133.9 (C_o of BPh₂), 133.4 (d, J = 12.6 Hz, C_o of PPh₂), 133.0 $(d, J = 12.0 \text{ Hz}, C_0 \text{ of } P'Ph_2), 128.3-129.1 \text{ (m, } C_p \text{ and } C_m \text{ of } PPh_2 \text{ and } C_m \text{ and$ P'Ph₂), 127.0 (C_m of BPh₂), 123.2 (C_p of BPh₂), 54.5 (d, J = 2.0 Hz, $PdN(CHMe_2)_2$), 50.1 (dd, J = 56 and 13 Hz, NCH₂), 24.1 (N(CH-*Me*Me')₂), 21.7 (N(CH*Me*Me')₂), 20.3 (br m, CH₂PPh₂ and CH₂P'Ph₂); ³¹P NMR (C₆D₆, 121 MHz) δ 31.5 (d, J = 39.3 Hz), 16.3 (d, J = 39.3 Hz). Anal. Calcd for C₄₅H₅₀BNP₂Pd: C, 68.93; H, 6.43; N, 1.79. Found: C, 68.66; H, 6.73; N, 1.64.

[**Ph₂BP₂**]**Pd(N,C:\eta^2-NⁱPr₂CHCH₂CH₃) (12).** Compound 12 was prepared with NⁱPr₂ⁿPr using a procedure identical to that used for compound **7** (65.8 mg, 78% yield). ¹H NMR (C₆D₆, 500 MHz) δ 7.37– 7.51 (m, 14H, aryl H), 6.96–7.19 (m, 16H, aryl H), 3.19 (m, 1H, PdNC*H*Et), 2.86 (d septet, *J* = 3.0 and 6.5 Hz, 1H, N(*CH*Me₂)C'HMe₂), 2.81 (septet, *J* = 6.5 Hz, 1H, N(*CH*Me₂)C'HMe₂), 2.19–2.38 (m, 4H, *CH*₂PPh₂ and C'*H*₂P'Ph₂), 1.28 (m, 2H, PdNCHC*H*₂Me), 1.00 (d, *J* = 6.5 Hz, 3H, N(CHMe₂)₂), 0.91 (d, J = 6.0 Hz, 3H, N(CHMe₂)₂), 0.57 $(d, J = 6.5 \text{ Hz}, 3\text{H}, \text{N}(\text{CH}Me_2)_2), 0.53 (d, J = 7.0 \text{ Hz}, 3\text{H}, \text{N}(\text{CH}Me_2)_2),$ 0.47 (t, J = 7.0 Hz, 3H, PdNCHCH₂CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 164.1 (br, C_{ipso} and C'_{ipso} of BPh₂), 140.7 (d, J = 25.0 Hz, C_{ipso} of PPh₂), 139.1 (d, J = 28.0 Hz, C'_{ipso} of PPh₂), 138.3 (dd, J = 2.0 and 37.0 Hz, C_{ipso} of P'Ph₂), 138.1 (d, J = 36.2 Hz, C'_{ipso} of P'Ph₂), 133.5 (d, J = 12.8 Hz, C_o of PPh₂), 133.1 (C_o of BPh₂), 132.9 (d, J = 12.3Hz, $C_{o'}$ of PPh₂), 132.7 ($C_{o'}$ of BPh₂), 132.63 (d, J = 11.1 Hz, C_{o} of P'Ph₂), 132.62 (d, J = 11.9 Hz, C₀ of P'Ph₂), 128.8 (d, J = 2.3 Hz, C_p of PPh₂), 128.7 (d, J = 1.9 Hz, $C_{p'}$ of PPh₂), 128.6 (d, J = 1.5 Hz, C_p of P'Ph₂), 128.2 (d, J = 1.6 Hz, $C_{p'}$ of P'Ph₂), 128.0 (d, J = 9.3 Hz, C_m of PPh₂), 127.8-127.7 (m, C_{m'} of PPh₂, C_m and C_{m'} of P'Ph₂), 126.2 (C_m of BPh₂), 126.1 (C_{m'} of BPh₂), 122.3 (C_p of BPh₂), 122.2 (C_{p'} of BPh₂), 70.2 (dd, *J* = 14.1 and 56.5 Hz, PdN(*C*HEt)), 54.1 (N(*C*HMe₂)₂), 50.7 (N(C'HMe₂)₂), 26.1 (N(CHMe₂)₂), 26.0 (N(CHMe'₂)₂), 23.4 (N(C'HMe₂)₂), 23.1 (PdN(CHCH₂Me)), 22.0 (br q, CH₂PPh₂), 21.5 $(N(C'HMe'_2)_2)$, 20.3 (br q, C'H₂PPh₂), 15.3 (dd, J = 7.8 and 8.5 Hz, PdN(CHCH₂*Me*)); ³¹P NMR (C₆D₆, 121 MHz) δ 32.3 (d, J = 30.2Hz), 13.7 (d, J = 30.2 Hz). Anal. Calcd for C₄₇H₅₄BNP₂Pd: C, 69.51; H, 6.70; N, 1.72. Found: C, 69.23; H, 6.67; N, 1.42.

[Ph2BP2]Pd(C(NtBu)H)(CNtBu) (13). Compound 7 (32.0 mg, 41.6 μ mol) and *tert*-butylisocyanide (15 μ L, 248.5 μ mol) were dissolved in benzene. The reaction mixture turned bright yellow. After 1 h, all volatiles were removed in vacuo, and the residue was taken up in a benzene/petroleum ether solution. After storing at -30 °C, microcrystalline solids precipitated. The solids were collected and washed with petroleum ether and diethyl ether (27.9 mg, 80% yield). IR(CH₂Cl₂, KBr): $\nu(HC = N^{1}Bu) = 1608 \text{ cm}^{-1}, \nu(C = N) = 2195 \text{ cm}^{-1}; {}^{1}H \text{ NMR}$ $(C_6D_6, 300 \text{ MHz}) \delta 8.75 \text{ (dd, } J = 38.8 \text{ and } 27.5 \text{ Hz}, 1\text{H}, \text{Pd}(\text{CN}^{\text{t}}\text{Bu})$ -*H*), 7.57–7.56 (m, 8H, aryl H's), 7.31 (t, J = 9.0 Hz, 4H, aryl H's), 7.21-7.08 (m, 6H, aryl H's), 6.95-6.87 (m, 12H, aryl H's), 2.28 (d, J = 14.7 Hz, 2H, CH₂PPh₂), 2.13 (d, J = 13.8 Hz, 2H, CH'₂PPh₂), 0.95 (s, 9H, Pd(CN'Bu)H), 0.58 (s, 9H, Pd(CN'Bu)); ¹³C NMR (CDCl₃, 125 MHz) δ 179.3 (dd, J = 8.6 and 131 Hz, Pd(CN^tBu)H), 163.4 (v br, C_{ipso} of BPh₂), 137.4 (d, J = 35.6 Hz), 133.0 (dd, J = 10 and 25 Hz), 132.8, 132.4, 130.5, 129.0 (dd, J = 2 and 69 Hz), 127.8 (dd, J = 11 and 34 Hz), 126.7, 126.4, 123.0, 122.7, 29.9, 29.2, 19 (br m), 16 (br m); ³¹P NMR (C₆D₆, 121 MHz) δ 23.6 (d, J = 55.8 Hz), 13.1 (d, J = 55.8 Hz). Anal. Calcd for C₄₈H₅₃BNP₂Pd: C, 68.87; H, 6.38; N, 3.35. Found: C, 69.19; H, 6.64; N, 3.06.

 $(Ph_2SiP_2)Pd(OTf)_2$ (14). A THF solution of AgOTf (455.0 mg, 1.77 mmol) was added dropwise to a THF solution of Ph2Si(CH2PPh2)2-PdCl₂ (671.2 mg, 0.886 mmol). The reaction turned bright yellow and cloudy. The reaction mixture was filtered through Celite, and the filtrate was concentrated in vacuo to a thick yellow residue. Upon addition of petroleum ether and vigorous stirring, 14 was isolated as a yellow powder in 98% yield (854 mg). ¹H NMR (d_6 -acetone, 300 MHz) δ 7.89 (dd, J = 7.5 and 12.9 Hz, 8H, H_o of PPh₂), 7.67 (br t, J = 7.5 Hz, 4H, H_p of PPh₂), (td, J = 2.1, 7.5 Hz, 8H, H_m of PPh₂), 7.38-7.33 (m, 6H, H_o and H_p of SiPh₂), 7.20 (t, J = 7.5 Hz, 4H, H_m of SiPh₂), 3.01 $(dd, J = 6.9 and 17.0 Hz, 4H, CH_2SiPh_2)$; ¹³C NMR (CDCl₃, 125 MHz) δ 135.0 (Co of SiPh2), 134.5 (m, Co of PPh2), 134.3 (Cp of PPh2), 133.0 (m, Cipso of PPh₂), 131.2 (Cp of SiPh₂), 130.4 (m, Cm of PPh₂), 129.0 $(C_m \text{ of SiPh}_2)$, 127.4 (d, J = 59.9 Hz, CF_3), 6.6 (m, CH_2PPh_2) (C_{ipso} of SiPh₂ was not clearly visible); ³¹P NMR (d_6 -acetone, 121 MHz) δ 36.4; ¹⁹F NMR (d_6 -acetone, 282 MHz) δ -74.3. Anal. Calcd for C₄₀H₃₄F₆O₆P₂-PdS₂Si: C, 48.76; H, 3.48; N, 0. Found: C, 48.36; H, 3.46; N, <0.05.

(**Ph₂SiP₂)PdCl₂ (15).** A THF solution of PdCl₂(NCPh)₂ (398.3 mg, 1.038 mmol) was added rapidly to a stirring THF solution of Ph₂Si-(CH₂PPh₂)₂ (603.0 mg, 1.038 mmol). After stirring for 1 h, the solution was filtered through Celite and dried in vacuo. The residue was washed thoroughly with Et₂O/CH₃CN and Et₂O/THF (>4:1) and dried under vacuum overnight to give a pale lime-yellow powder (768.3 mg, 89%). ¹H NMR (CDCl₃, 300 MHz) δ 7.62 (dd, *J* = 7.5 and 12.3 Hz, 8H, H_o of PPh₂), 7.39 (dd, *J* = 6.9 and 8.4 Hz, 4H, H_p of PPh₂), 7.34–7.25 (m, 10H, H_m of PPh₂ and H_p of SiPh₂), 7.12 (t, *J* = 7.5 Hz, 4H, H_m of

Scheme 1

SiPh₂), 7.20 (d, J = 6.9 Hz, 4H, H_o of SiPh₂), 2.11 (dd, J = 5.4 and 15.0 Hz, 4H, CH_2SiPh_2); ¹³C NMR (CDCl₃, 75 MHz) δ 133.8 (C_o of SiPh₂), 133.7 (app t, J = 6.0 Hz, C_o of PPh₂), 132.9 (m, C_{ipso} of PPh₂), 131.6 (C_{ipso} of SiPh₂), 131.5 (C_p of PPh₂), 130.2 (C_p of SiPh₂), 128.4 (app t, J = 6.0 Hz, C_m of PPh₂), 128.3 (C_m of SiPh₂), 9.4 (dd, J = 13.1 and 15.8 Hz, CH_2PPh_2); ³¹P NMR (CDCl₃, 121 MHz) δ 22.66. Anal. Calcd for C₃₈H₃₄Cl₂P₂PdSi: C, 60.21; H, 4.52; N, 0. Found: C, 59.34; H, 4.52; N, <0.05.

[((Ph₂SiP₂)Pd)₂][OTf]₂ (16). Diisopropylethylamine (54 µL, 0.310 mmol) was added dropwise to a THF solution (8 mL) of 14 (100.5 mg, 0.102 mmol). Within 5 min the solution turned from yellow to burnt orange. The reaction was monitored by 31P NMR. After 20 h all volatiles were removed in vacuo. After washing with Et₂O, the residue was redissolved in CH₃CN and filtered through Celite. Et₂O was added to the solution to precipitate orange crystalline solids. The solids were collected, washed with Et₂O/CH₃CN (9:1), and dried in vacuo to afford 59.3 mg of 16 (70% yield). ¹H NMR (CDCl₃, 300 MHz) δ 7.8-7.6 (m, 8H, aryl H's), 7.4-7.0 (m, 44H, aryl H's), 6.9 (d, 8H, aryl H's), 2.6 (d, 4H, CH2SiPh2), 1.7 (d, 4H, C'H2Si'Ph2); 13C NMR (CDCl3, 125 MHz) δ 134.9 (C_p of PPh₂), 134.2–134.1 (m, C_o of PPh₂ and C_p of P'Ph₂), 133.3 (d, J = 11 Hz, C_m of PPh₂), 133.1 (m, C_{ipso} of PPh₂), 131.5 (C_{ipso} of SiPh₂), 130.6 (d, J = 11 Hz, C_m of P'Ph₂), 129.9 (C_p of SiPh₂), 129.3 (m, C_{ipso} of P'Ph₂), 128.8 (m, C_o of P'Ph₂), 128.3 (C_m of SiPh₂), 108.0 (br m, CF₃), 13.8 (CH₂SiPh₂), 12.5 (C'H₂SiPh₂); ¹⁹F NMR (CDCl₃, 282 MHz) δ -74.7; ³¹P NMR (CDCl₃, 121 MHz) δ 22.2 (d, J = 50 Hz), -0.2 (d, J = 50 Hz). Anal. Calcd for C₇₈H₆₈F₆O₆P₄Pd₂S₂-Si₂: C, 56.02; H, 4.10; N, 0. Found: C, 55.93; H, 3.83; N, <0.05.

[(Ph₂SiP₂)Pd(2-phenylpyridine)OTf][OTf]. *o*-Phenylpyridine was added dropwise to a THF solution of 14. This compound was generated in situ for the purpose of this experiment and has not been isolated in crystalline form. ³¹P NMR (THF, 121 MHz) δ 37.1 (d, *J* = 14.5 Hz), 22.8 (d, *J* = 14.5 Hz); ¹⁹F NMR (THF, 282 MHz) δ -75.3, -75.9.

Standard Kinetic Protocol: Measurement of Reaction Rates. Complex 1 (30.0 mg, 31.2 μ mol) was dissolved in 0.6 mL of THF, transferred to a J-Young NMR tube, and chilled inside a glovebox coldwell below -50 °C. Diisopropylethylamine (109 µL, 626 µmol) was then added to the cold solution. The tube was inserted into an NMR probe at 23 °C, and the temperature was allowed to equilibrate for 10 min. The decay of complex 1 was monitored by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy against an internal integration standard, which consisted of a sealed capillary tube containing a 1.6 M solution of Ph₃P=O in CH₂Cl₂. Spectra were taken at intervals of ca. 3 min for ca. 3.5 halflives. Besides the integral standard, the only observable peaks were due to 1 and the palladacycle 6. The data were satisfactorily fit to an exponential decay, and the first-order rate constant was obtained from the ln(1) versus time plot. The reaction was carried out in triplicate, giving $k_{obs} = 5.63$, 5.49, and 5.76 $\times 10^{-4}$ s⁻¹. This protocol was also used in determining KIE data, measuring the rate dependence on amine concentration and generating the Eyring plot.

KIE Studies. NⁱPr₂CD₂CH₃ was prepared by reducing the amide

NⁱPr₂C(O)CH₃ with LiAlD₄ under standard conditions.¹⁷ The amine was extracted with petroleum ether and filtered through a silica plug to give spectroscopically pure NⁱPr₂CD₂CH₃. The reaction was carried out in triplicate, giving $k_{obs} = 9.36$, 9.65, and 10.57 × 10⁻⁵ s⁻¹.

Rate Dependence on Amine Concentration. Seven kinetic runs were conducted in which the concentration of NⁱPr₂Et was varied from 0.16 to 1.56 M (3 to 30 equiv relative to 1). The total volume of the samples was kept constant at 0.6 mL. The following values for k_{obs} (×10⁻⁴ s⁻¹) were obtained: 1.21 (3 equiv of amine), 1.80 (5 equiv of amine), 3.03 (10 equiv of amine), 4.43 (15 equiv of amine), 5.49 (20 equiv of amine), 6.96 (25 equiv of amine), and 8.41 (30 equiv of amine).

Activation Parameters ($\Delta H^{\ddagger}, \Delta S^{\ddagger}$) for the Overall Amine Activation. A series of reactions was conducted over a 35 °C temperature range (0–35.3 °C). The NMR probe temperatures were measured using an anhydrous MeOH standard. The following values for k_{obs} [THF]_i²/ [NⁱPr₂Et]_i (×10⁻² s⁻¹) were obtained: 0.37 (0.0 °C), 0.94 (7.5 °C), 1.76 (13.3 °C), 1.82 (13.3 °C), 2.81 (17.1 °C), 5.41 (23.1 °C), 9.16 (28.4 °C), and 18.41 (35.3 °C). The data provided a satisfactory linear fit in the Eyring plot, from which the activation parameters were calculated, $\Delta H^{\ddagger} = 17.9 \pm 0.2$ kcal/mol, $\Delta S^{\ddagger} = -4 \pm 1$ eu. Regression analyses of the data were performed using Microsoft Excel, and the activation parameters are reported with 95% confidence.

VT-NMR Studies. Complex 1 (20.0 mg, 20.8 μ mol) was dissolved in 0.6 mL of toluene- d_8 , transferred to a J-Young NMR tube, and chilled inside a glovebox cold-well. Triethylamine (145 μ L, 1.04 mmol) was then added to the cold solution. The tube was inserted into an NMR probe at -50 °C. As the temperature was slowly raised to 0 °C, the reaction was monitored by ¹H and ³¹P NMR spectroscopy. Conversion to the palladacycle **7** was relatively clean (~80% crude yield by ³¹P NMR spectroscopy).

Results

Synthesis and Structural Characterization of [[Ph₂BP₂]-Pd(THF)₂][OTf] (1) and [Ph₂BP₂]Pd(THF)(OTf) (1'). A reactive [Ph₂BP₂]Pd(II) system was required to carry out the C-H bond activation studies described herein. A labile triflate derivative, [Ph₂BP₂]Pd(OTf)(L), was targeted, and the following protocol (Scheme 1) afforded the species of interest. Mixing [Ph₂BP₂][NBu₄] and PdCl₂(NCPh)₂ in THF afforded a mixture of two products, [[Ph₂BP₂]PdCl₂][NBu₄] (2) and {[Ph₂BP₂]Pd-(μ -Cl)}₂ (3). The mixture of 2 and 3 was converted completely to {[Ph₂BP₂]Pd(μ -Cl)}₂ (3) by addition of a slight excess of NaBPh₄ to the reaction mixture (Scheme 1). Crystals of 3 were grown from THF/CH₂Cl₂ solutions at -30 °C in 73% overall yield (based upon PdCl₂(NCPh)₂). Dimeric 3 was then converted to the more reactive species, [[Ph₂BP₂]Pd(THF)₂][OTf] (1), by

⁽¹⁷⁾ March, J. Advanced Organic Chemistry-Reactions, Mechanisms, and Structure; John Wiley & Sons: New York, 1992; p 448.

Figure 2. (A) Displacement ellipsoid representation (50%) of complex 1'. Selected bond distances (Å) and angles (deg): Pd-O1, 2.157(2); Pd-O2, 2.155(2); Pd-P1, 2.2378(8); Pd-P2, 2.2309(9); O1-Pd-O2, 86.52(7); P1-Pd-P2, 89.16(3); O1-Pd-P2, 92.33(6); O2-Pd-P1, 91.90(5). (B) Displacement ellipsoid representation (50%) of complex **5**. Selected bond distances (Å) and angles (deg): Pd-O1, 2.195(2); Pd-N, 2.139(3); Pd-P1, 2.2718(9); Pd-P2, 2.2503(9); O1-Pd-N, 89.85(9); P1-Pd-P2, 88.43-(3), O1-Pd-P1, 88.00(6); N-Pd-P2, 93.87(7). Hydrogen atoms and solvent molecules were omitted for clarity.

addition of AgOTf in THF. As indicated by its formula, complex 1 exists in THF solution predominantly as a bis(solvento) cation, which is consistent with the following: (a) a single resonance (s, $\delta = 48.2$ ppm) at 23 °C in the ³¹P NMR spectrum, (b) integrations consistent with 2 equiv of THF in the ¹H NMR spectrum, and (c) combustion analysis data. Nonetheless, an X-ray diffraction analysis of a single-crystal grown from a purified sample in THF at -30 °C revealed a zwitterionic, mono-THF adduct, ([Ph₂BP₂]Pd(THF)(OTf)) (1') (Scheme 1, Figure 2A), and an unbound THF molecule. The THF coligands of 1 are appreciably labile and in rapid exchange with the competitive triflate ligand. This exchange process, $1 \neq 1' +$ THF, was observed by ³¹P VT-NMR spectroscopy in CD₂Cl₂ solution. A broad signal is evident at 47 ppm, indicative of fluxional behavior at ambient temperature. Upon cooling the sample to -85 °C, two signals become fully resolved with a peak separation of 916 Hz. These peaks coalesce at -42.3 °C, and a barrier of 16.2 kcal/mol can be calculated for the THF and triflate exchange at -42.3 °C.¹⁸

The crystal structure of **1'** shows an essentially square planar complex with bond angles that deviate only slightly from their ideal values. The O(1)-Pd-O(2) and O(1)-Pd-P(2) bond angles are 86.52(7)° and 92.33(6)°, respectively. The Pd-O bond distances for each of the oxygen donors are identical (2.157(2) and 2.155(2) Å for the THF and triflato donors, respectively). Complex **1'** has few structurally authenticated congeners in the palladium literature. The most comparable structures are those of the complexes [(dppp)Pd(H₂O)(X)][X] (where X = OTf and OTs) reported separately by Stang and Toniolo.¹⁹ The Pd-O bond distances in **1'**, and also its Pd-P bond distances (2.2378(8) and 2.2309(9) Å), compare favorably with these examples.

Reactivity of 1 with Arene Substrates. The possibility for complex **1** to mediate aryl C–H bond activation was briefly examined by dissolving **1** in benzene solution in the presence of the sterically encumbered amine base N^iPr_2Et . Our lab had observed phenyl transfer from benzene to a platinum(II) triflate

complex in the presence of NⁱPr₂Et, which served as a formal H^+ acceptor to produce [HNⁱPr₂Et][OTf].²⁰ In the present case, adding an excess of NⁱPr₂Et to a benzene solution of 1 at 25 °C indeed generated a stoichiometric equivalent of [HNⁱPr₂Et][OTf]. However, the major palladium-containing species generated (>70% of the mixture by ³¹P NMR spectroscopy) was the previously reported palladium(I) dimer, {[Ph₂BP₂]Pd}₂ (4, eq 1).²¹ A second diamagnetic species was also evident (³¹P NMR), but none of the anticipated aryl transfer product, [Ph2BP2]Pd-(Ph)(THF), was detected.²² Several observations from the literature suggest that [Ph₂BP₂]Pd(Ph)(THF) may be unstable. For example, it is known that biphenyl and other biaryls can be liberated from palladium(II) aryl species.²³ Biphenyl has also been derived directly from a benzene C-H activation process mediated by palladium(II).²⁴ Related aryl coupling processes are known for phosphine-supported platinum(II) systems.^{25,7b} In the present [Ph₂BP₂]Pd(II) system, however, benzene-derived biphenyl could not be identified (1H NMR, GC-MS).

To further explore whether 1 might activate aryl C-H bonds, o-phenylpyridine was tested as a substrate, our explanation being that a favorable chelate stabilization might encourage metalation of the arene ring. Several platinum(II) and palladium(II) halide and pseudo-halide precursors are known to react with ophenylpyridine in the presence of a sacrificial base to produce cyclometalated products.²⁶ Exposure of **1** to either stoichiometric or excess o-phenylpyridine afforded a single product, the adduct complex [Ph₂BP₂]Pd(o-phenylpyridine)(OTf) (5), which was verified by X-ray crystallography. Complex 5 is quite hindered, as can be gleaned from its solid-state crystal structure (Figure 2B). At room temperature in solution, its ¹H NMR resonances are broad, presumably due to hindered rotation about the Pd-N bond. These peaks sharpen upon cooling to -40 °C, and the expected four resonances for the ligand methylene protons become well resolved. Relative to 1', the Pd-OTf interaction of 5 is modestly elongated (2.195(2) versus 2.155(2) Å), also true of the Pd-P bond distances (2.25-2.27 versus 2.23-2.34 Å). These relative bond lengths reflect the steric congestion suffered by 5, which nonetheless is unexpectedly robust. For example, no reaction occurred when 5 was incubated in THF at 80 °C in the presence of either excess o-phenylpyridine or excess K₂CO₃.

- (20) Harkins, S. B.; Peters, J. C. Organometallics 2002, 21, 1753-1755.
- (21) Lu, C. C.; Peters, J. C. J. Am. Chem. Soc. 2002, 124, 5272-5273.
 (22) We note that [Ph₂BP₂]Pd(Ph)(CH₃CN) can be generated in solution and spectroscopically identified by reaction of {[Ph₂BP₂]Pd(μ-Cl)}₂ with PhMgBr in the presence of acetonitrile.
- Yagyu, T.; Hamada, M.; Osakada, K.; Yamamoto, T. Organometallics 2001, 20, 1087–1101.
- (24) Ackerman, L. J.; Sadighi, J. P.; Kurtz, D. M.; Labinger, J. A.; Bercaw, J. E. Organometallics 2003, 22, 3884–3890.
- (25) Konze, W. V.; Scott, B. L.; Kubas, G. J. J. Am. Chem. Soc. 2002, 124, 12550–12556.
- (a) Constable, E. C.; Thompson, A. M. W. C.; Leese, T. A.; Reese, D. G.
 F.; Tocher, D. A. *Inorg. Chim. Acta* **1991**, *182*, 93–100. (b) Wong-Foy,
 A. G.; Henling, L. M.; Day, M.; Labinger, J. A.; Bercaw, J. E. J. Mol. Catal. A: Chem. **2002**, *189*, 3–16.

⁽¹⁸⁾ Gasparro, F. P.; Kolodny, N. H. J. Chem. Educ. 1977, 54, 258-261.

 ^{(19) (}a) Stang, P. J.; Cao, D. H.; Poulter, G. T.; Arif, A. M. Organometallics 1995, 14, 1110–1114. (b) Benetollo, F.; Bertani, R.; Bombieri, G.; Toniolo, L. Inorg. Chim. Acta 1995, 233, 5–9.

Activation of Trialkylamines by Complex 1. Treating 1 with 20 equiv of NⁱPr₂Et in THF solution at ambient temperature resulted in the gradual consumption of starting material and the rise of a single new palladium product, along with a stoichiometric equivalent of [HNⁱPr₂Et][OTf]. The new palladium species exhibited resonances in the ³¹P NMR spectrum that compared well to a minor product that was observed when 1 was exposed to NⁱPr₂Et in benzene solution (vide supra). Single crystals of this species were grown from a THF/petroleum ether solution, and an X-ray diffraction study revealed it to be the three-membered palladacycle [Ph₂BP₂]Pd(N,C: η^2 -NⁱPr₂CHCH₃) (6, eq 2). This formulation is consistent with the complex's spectral data in solution. For example, the ${}^{13}C{}^{1}H$ NMR spectrum features a signature resonance at 62.6 ppm (dd, ${}^{2}J_{C-Pcis}$ = 13.8 Hz, ${}^{2}J_{C-Ptrans}$ = 56.7 Hz) due to the coupling of an organometallic carbon atom to two nonequivalent phosphorus nuclei.

The scope and selectivity of the amine activation process was explored (Scheme 2). In general, the activation process was found to proceed for trialkylamine substrates that feature secondary C-H bonds adjacent to the N atom. Palladacycle products that feature three-membered rings appear to be formed exclusively, with no apparent tendency to form larger metallacycles. To test the reaction's selectivity, the amine NCy₂Et was chosen as a substrate as it contains both tertiary and secondary C-H bonds that can undergo activation. Treatment of 1 with excess NCy₂Et in THF resulted in clean conversion to only one palladacycle, $[Ph_2BP_2]Pd(N,C:\eta^2-NCy_2CHMe)$ (8), derived from formal cleavage of a secondary C-H bond of the ethyl group. The substrates N-methylpyrrolidene and N-methylpiperidene were also examined to compare the reactivity of primary versus secondary C-H bonds. Again, activation at the secondary C-H position occurred exclusively, affording the bicyclic palladacycles [Ph₂BP₂]Pd(N,C: η^2 -NMeCH(CH₂)₃) (9) and $[Ph_2BP_2]Pd(N,C:\eta^2-NMeCH(CH_2)_4)$ (10), respectively. Scheme 2

To induce reactivity of primary C–H bonds, the reactivity of **1** with NCy₂Me and NⁱPr₂Me was examined. A steric bias might in these cases be expected to direct the palladium center toward the methyl position. However, the predominant byproduct (70–80%) for these substrates was the familiar palladium-(I) dimer, {[Ph₂BP₂]Pd}₂ (**4**) (³¹P NMR).

Addition of diisopropyl(2-propenyloxymethyl)amine to 1 effected formal C-O rather than C-H bond cleavage to generate [Ph₂BP₂]Pd(N,C: η^2 -NⁱPr₂CH₂) (11, eq 3) in good yield. Allyl ethers are known to react with Pd(0) sources to generate palladium allyl products via formal C-O cleavage.²⁷ The highyield isolation of 11 shows quite clearly that [Ph₂BP₂]Pd(N,C: η^2 -NR₂CH₂) are viable products of amine activation, and it is therefore puzzling that a similar product is not formed when 1 is treated with NⁱPr₂Me (vide infra). To determine the fate of the allyl ether group, an NMR-scale reaction was monitored in THF- d_8 with 3 equiv of diisopropyl(2-propenyloxymethyl)amine. A ¹H NMR spectrum of the crude product mixture suggested the presence of an aldehyde byproduct which could be isolated by vacuum transfer and clearly identified as acrolein by comparison of its ¹H NMR spectrum to that of an authentic sample.

Molecular Structures of the Palladacycles 8 and 9. X-ray diffraction studies of the palladacycles were pursued to gain insight into the structural nature of the Pd–N–C core. Crystals of 6 and 11 suffered from disorder of the iminium group, $R_2C=N^iPr_2$, which sits in two orientations. Derivatives 8 and 9 provided more reliable structural parameters (Figure 3, Table 1). In each structure the bond angles around palladium are largely distorted from 90°, though all four atoms coordinated to palladium lie in a well-defined plane. Specifically, for 8 and 9, the N–Pd–C_{α} angles are acute (39.7(1)° and 38.3(2)°,

Figure 3. Displacement ellipsoid representations (50%) of $[Ph_2BP_2]Pd(N,C;\eta^2-NCy_2CHMe)$ (8) and $[Ph_2BP_2]Pd(N,C;\eta^2-NMeCH(CH_2)_3)$ (9). Hydrogen atoms have been omitted for clarity.

Table 1.	Selected Bond	Distances	(Å)	and	Angles	(°)	for
Complexe	es 8 and 9				•		

complex 8	complex 9				
Pd-C(39)	2.037(3)	Pd-C(43)	2.048(4)		
Pd-N	2.180(3)	Pd-N	2.104(3)		
Pd-P(1)	2.3641(9)	Pd-P(1)	2.3354(8)		
Pd-P(2)	2.2549(9)	Pd-P(2)	2.2945(8)		
N-C(39)	1.438(4)	N-C(43)	1.361(5)		
N-C(41)	1.502(4)	N-C(39)	1.460(5)		
N-C(47)	1.484(4)	N - C(40)	1.420(6)		
P(1) - Pd - P(2)	93.60(3)	P(1) - Pd - (2)	93.49(3)		
P(1)-Pd-N	122.31(7)	P(1)-Pd-N	120.9(1)		
P(2)-Pd-C(39)	104.04(9)	P(2) - Pd - C(43)	107.6(2)		
N-Pd-C(39)	39.7(1)	N-Pd-C(43)	38.3(2)		
C(39) - N - C(41)	115.8(3)	C(43)-N-C(39)	117.4(4)		
C(39)-N-C(47)	117.9(3)	C(43) - N - C(40)	108.0(4)		
C(41)-N-C(47)	119.3(2)	C(39)-N-C(40)	117.0(4)		

Figure 4. Limiting resonance forms for the palladacycles.

respectively) and the P(1)–Pd–N angles (122.3° and 120.9°) are significantly larger than the P(2)–Pd– C_{α} angles (104.0° and 107.6°).

Palladacycles akin to **8** and **9** have not to our knowledge been described. However, metallaaziridines featuring other transition metals are well established, though they are formed from different methods of preparation.²⁸ For example, a family of nickel aziridines (PR₃)(X)Ni(N,C: η^2 -CH₂NMe₂) that are structurally related to the palladacycles described here were first reported nearly three decades ago.^{28d} Two limiting resonance forms are to be considered with respect to the Pd–N–C core (Figure 4).^{28a,d} The first emphasizes a Pd(0) form of the complex with an anionic {[Ph₂BP₂]Pd}⁻ fragment coordinated by an iminium cation (RHC=NR₂⁺). This formulation is analogous to the many olefin complexes of palladium(0) that are known. The other limiting resonance form assigns the alkylamine functionality as a three-electron LX-type organometallic ligand.

In this latter view a palladium(II) center is formally coordinated to an alkyl ligand with a β -amine donor occupying the fourth site.

Close examination of the structural parameters of 8 and 9 does not unambiguously distinguish between the two resonance forms. The Pd- C_{α} distances observed for 8 and 9 are unusually short for cis-bis(phosphine)Pd complexes. Their respective distances of 2.037(3) and 2.048(4) Å are just below both the minimum $Pd-C(sp^3)$ and $Pd-C(sp^2-alkene)$ bond distances reported for palladium supported by two phosphines in cis relation. The N–C $_{\alpha}$ bond lengths for complexes 8 and 9 are between those of free iminium cations (ca. 1.32 Å) and N-C single bonds (ca. 1.50 Å) but are also quite different from one another (1.438(4) Å for 8 and 1.361(5) Å for 9). The latter N-C bond distance is the shortest thus far reported for mononuclear metallaaziridines of related structure (range 1.392-1.548 Å, mean of 1.440 Å, SD = 0.03 Å, Cambridge Structural Database²⁹). The bond angles around the nitrogen atom are nearly 120° for complex 8,³⁰ suggesting the nitrogen atom is perhaps better formulated as sp²- rather than sp³-hybridized.

Probing the Reversibility of Palladacycle Formation. To probe whether the formation of the palladacycles [Ph₂BP₂]Pd-(N,C: η^2 -NR₂CHR') might be reversible, we examined whether deuterium would scramble into the palladacycle aliphatic positions upon incubation in the presence of a deuterated ammonium salt. Exposure of **1** to ⁱPr₂NCH₂CH₂CH₃ proceeded in similar fashion to provide the expected palladacycle [Ph₂-BP₂]Pd(N,C: η^2 -iPr₂NCHCH₂CH₃) (**12**). A homogeneous solution of complex **12** and 15 equiv of [DNⁱPr₂CD₂Et][OTf] was stirred at 25 °C for several days. Complex **12** was stable under these conditions: no degradation was evident in the ³¹P NMR spectrum of the reaction solution. Upon examination of the ²H NMR spectrum, however, it was evident that deuterium had scrambled into the α- and β-carbon positions of the iminium ligand in an approximate ratio of 1:5, respectively (eq 4).

In a related experiment we examined whether iminium ligand substitution would proceed in the presence of an ammonium

⁽²⁷⁾ See: Yamamoto, T.; Akimoto, M.; Saito, O.; Yamamoto, A. Organometallics 1986, 5, 1559–1567 and references therein.

⁽²⁸⁾ For pertinent examples, see: (a) Crawford, S. S.; Knobler, C. B.; Kaesz, H. D. Inorg. Chem. **1977**, 16, 3201–3207. (b) Matsumoto, M.; Nakatsu, K.; Tani, K.; Nakamura, A.; Otsuka, S. J. Am. Chem. Soc. **1974**, 96, 6777– 6778. (c) Abel, E. W.; Rowley, R. J.; Mason, R.; Thomas, K. M. J. Chem. Soc., Chem. Commun. **1974**, 72. (d) Sepelak, D. J.; Pierpont, C. G.; Barefield, E. K.; Budz, J. T.; Poffenberger, C. A. J. Am. Chem. Soc. **1976**, 98, 6178–6185.

⁽²⁹⁾ Allen, F. H. Acta Crystallogr. 2002, B58, 380-388.

⁽³⁰⁾ For complex 9, the bond angles around nitrogen are also near 120° with the exception of the pyrrolidene ring angle, which is restrained by the ring.

salt and a trialkylamine. The palladacycle [Ph₂BP₂]Pd(N,C: η^2 -NⁱPr₂CHCH₃) **6** was incubated with 15 equiv of [HNEt₃][OTf] and 15 equiv of NEt₃ in THF at 80 °C. Under these conditions, none of the palladacycle [Ph₂BP₂]Pd(N,C: η^2 -NEt₂CHCH₃) **7** could be detected after several days (eq 5). If **6** could undergo protonation to produce [Ph₂BP₂]Pd(NⁱPr₂Et₂)(OTf) at some reasonable rate, then we would expect a detectable degree of exchange to occur (i.e., [Ph₂BP₂]Pd(NⁱPr₂Et)(OTf) + NEt₃ \rightarrow [Ph₂BP₂]Pd(NEt₃)(OTf) + NⁱPr₂Et).

Addition of *tert*-Butyl Isocyanide and Sodium Cyanide to [Ph₂BP₂]Pd(N,C: η^2 -NEt₂CHCH₃) (7). The addition of excess *tert*-butyl isocyanide to 7 resulted in a single new palladium complex, [Ph₂BP₂]Pd(C(H)=N'Bu)(CN'Bu) (13), and concomitant expulsion of the enamine Et₂NC(H)=CH₂ (eq 6). Complex 13 is characterized by two intense vibrations in its infrared spectrum (ν (HC=N'Bu) = 1608 cm⁻¹, ν (C=N'Bu) = 2195 cm⁻¹; CH₂Cl₂/KBr) and a signature ¹H NMR resonance at 8.75 ppm for the iminoformyl proton Pd(C(H)=N'Bu).³¹ The release of the enamine Et₂NC(H)=CH₂ was confirmed by comparing the crude reaction spectrum with that of an independently prepared sample.

Addition of cyanide anion to **7** effected the release of the iminium ligand as a functionalized amine product via generation of a new C–C bond at the α position (eq 7). Treatment of **7** with 5 equiv of NaCN in methanol/THF produced Et₂NCH-(CN)CH₃, confirmed by GC-MS and ¹H NMR analysis following workup. A ¹H NMR spectrum of the reaction solution immediately following the addition in CD₃OD/THF-*d*₈ established that the consumption of **7** is very rapid at room temperature and that the Et₂NCH(CN)CH₃ byproduct is released quantitatively. The palladium product(s) of the reaction have not been identified.

Kinetic Data. The decay of complex **1** (0.044 M) in the presence of 20 equiv of NⁱPr₂Et was monitored by ³¹P NMR spectroscopy and exhibited clean first-order decay in THF at 23 °C. The reaction rate was conveniently determined by integrating the ³¹P NMR resonance of complex **1** versus an internal standard of Ph₃P=O, sealed as a CH₂Cl₂ solution within a capillary tube. During the reaction course the starting material

Figure 5. Eyring plot for the reaction of **1** with 20-fold NⁱPr₂Et from 273.2 to 308.5 K, $\Delta H^{\ddagger} = 17.9 \pm 0.2$ kcal/mol, $\Delta S^{\ddagger} = -4 \pm 1$ eu, $\Delta G^{\ddagger} = 19.0 \pm 0.3$ kcal/mol at 23.1 °C.

Figure 6. Rate dependence on $[N^iPr_2Et]$. Reaction conditions: [1] = 0.052 M; $[N^iPr_2Et]$ is varied between 0.16 and 1.56 M at 296 K in THF (0.6 mL total solution volume).

1 and the product 6 were the only two species observed. The rate constant, $k_{obs} = 5.6(1) \times 10^{-4} \text{ s}^{-1}$, was obtained as the average of three independent runs, and ΔG^{\dagger} was calculated to be 19.0 ± 0.3 kcal/mol at 23.1 °C. Perhaps a more meaningful constant is k', where $k_{obs} = k' [N^{i}Pr_2Et]/[THF]^2$ (vide infra). By assuming constant concentrations of NⁱPr₂Et and THF, a value of $k' = 5.6(1) \times 10^{-2} \text{ s}^{-1}$ is obtained $([N^{i}Pr_{2}Et]_{i} = 0.88 \text{ M} \text{ and}$ $[THF]_i = 9.33 \text{ M}$). The temperature dependence of the reaction rate was explored between 0 and 35.3 °C. An Eyring plot of these data is provided in Figure 5, from which the activation parameters $\Delta H^{\ddagger} = 17.9 \pm 0.2$ kcal/mol and $\Delta S^{\ddagger} = -4 \pm 1$ eu can be extrapolated. The effect of the amine concentration [Ni-Pr₂Et] on the reaction rate was also examined by monitoring the rate of decay of 1 in the presence of 3-30 equiv of NⁱPr₂Et at 23 °C in THF. The rate data for consumption of 1 versus [NⁱPr₂Et] are plotted in Figure 6 and indicate a rate that is first order in [NⁱPr₂Et].

The relative rate of the reaction between **1** (0.044 M) and the substrate NⁱPr₂Et or NⁱPr₂CD₂Me (0.88 M) was examined in THF. A dramatic attenuation in rate was observed for the deuterated amine substrate ($k_{obs} = 9.9(6) \times 10^{-5} \text{ s}^{-1}$), providing a kinetic deuterium isotope effect (KDIE), $k_{rel}(k_H/k_D)$, of 5.9. For the case of NⁱPr₂CD₂Me, a small amount of an intermediate species was detected in the ³¹P NMR spectrum. This species featured a pair of doublets at 28.5 and 39.4 ppm with ²J_{PP} = 62 Hz and can be tentatively assigned as the amine adduct complex, [Ph₂BP₂]Pd(NⁱPr₂CD₂Me)(OTf), based upon the similarity of its chemical shift to [Ph₂BP₂]Pd(*o*-phenylpyridine)-(OTf) (**5**). We presume that [Ph₂BP₂]Pd(NⁱPr₂CD₂Me)(OTf) accumulates due to the attenuated C–D activation rate.

^{(31) (}a) Ciriano, M.; Green, M.; Gregson, D.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Dalton Trans. 1979, 8, 1294– 1300. (b) Kayaki, Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1997, 70, 917–927. (c) Veya, P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1994, 13, 441–450.

Inspection of the ¹H and ²H NMR spectra of the reaction between **1** and NⁱPr₂CD₂Me after the complete consumption of **1** revealed that the palladacycle product **6** contained deuterium at the α - and β -carbon positions in a nearly statistical ratio of 1:4 (eq 8). The ammonium salt byproducts, [DNⁱPr₂CD₂CH₃]⁺ and [HNⁱPr₂CD₂CH₃]⁺, showed no evidence for deuterium scrambling into the β -carbon position. The extent of deuterium scrambling into the alkyl chain was next investigated using the *N*-propylamine substrate ⁱPr₂NCD₂CH₂CH₃. In this case deuterium incorporation occurred only at the α - and β -carbon positions and in a statistical ratio of 1:2. No scrambling into the γ -carbon position was detected (eq 9).

Observation of Intermediates by NMR Spectroscopy Using NEt₃ in Toluene. Intermediates during the amine activation reaction were difficult to study because of their low concentrations in THF. Unfortunately, THF is the only solvent that mediates the quantitative conversion of **1** and amine to the corresponding palladacycle product. A reasonable compromise was found by studying the activation reaction at low temperature in toluene. Recall that in benzene or toluene the treatment of **1** with NⁱPr₂Et (or NEt₃) at room temperature generates {[Ph₂- BP_2 Pd $_2$ (4) as the major product and only a small amount of the palladacycle 6 (or 7). At low temperature (toluene, -35 to 0 °C), however, the palladacycle products dominate. The case of NEt3 was examined in detail because of its slightly simplified ¹H NMR spectrum in the aliphatic region. A toluene- d_8 solution of 1 in the presence of 50 equiv of NEt₃ was examined from -50 to 0 °C by both ¹H and ³¹P NMR spectroscopy (see Figure 7). In the low-temperature regime (-50 °C), two broad resonances are observed in the ³¹P NMR spectrum (42.7 ppm, 45.2 ppm) due to slow exchange between 1 and 1'. As noted previously, a similar spectrum is observed for 1 in CD₂Cl₂ at -50 °C in the absence of amine. At -35 °C the two signals have coalesced into a single resonance that is centered at 45 ppm, indicating that 1 and 1' are in fast exchange. As the sample is further warmed to -20 °C, precursor 1 decays and four new doublets arise that represent two independent species. The more downfield pair of doublets (45.0 and 29.5 ppm, $J_{PP} = 25.9$ Hz) is relatively similar in chemical shift to the resonances observed for the o-phenylpyridine adduct complex 5 (46.3 and 35.3 ppm). By analogy, this intermediate is proposed to be the amine adduct complex [Ph₂BP₂]Pd(NEt₃)(OTf). An alternative and perhaps equally reasonable formulation for this intermediate would be to suggest that an agostic C-H bond from the amine ligand fills the fourth site and that the triflate anion is outer sphere. However, examination of the ¹H NMR spectrum between -60and -20 °C provided no evidence for an agostic C-H proton.

The other pair of doublets (32.5 and 18.0 ppm, ${}^{2}J_{PP} = 36.0$ Hz), which corresponds to another intermediate, is more complex in the proton-coupled ${}^{31}P$ NMR spectrum (Figure 7, inset a). The doublet centered at 18 ppm splits into a doublet of doublets with a rather large secondary coupling constant of \sim 200 Hz. The ¹H NMR spectrum shows a doublet of doublets centered at -8.62 ppm (${}^{3}J_{HP}$ (*cis*) = 30.5 Hz and ${}^{3}J_{HP}$ (*trans*)

Figure 7. Reaction profile followed by ${}^{31}P{}^{1}H$ NMR spectroscopy of **1** and 50 equiv of NEt₃ in d_8 -toluene. The temperature was gradually warmed from -50 to 0 °C. (a) Inset shows splitting of peak upon removing proton decoupling. Spectra and inset correspond to the scale shown at the bottom.

= 200.4 Hz). This resonance simplifies to a singlet when the ³¹P nuclei are decoupled. These data collectively intimate a square planar "[Ph₂BP₂]Pd(H)(L)" hydride intermediate. As discussed below, this intermediate is proposed to be the hydride iminium adduct [[Ph₂BP₂]Pd(H)(Et₂N=CHCH₃)][OTf].

The two detectable intermediates decayed as the concentration of palladacycle **7** increased. As the reaction proceeded at -20 °C, the intermediates maintained a ~1:1 ratio until they were consumed. Integration of the final ³¹P NMR spectrum acquired at 0 °C established that **7** had been generated in ~80% yield. As shown in Figure 7, the palladium dimer {[Ph₂BP₂]Pd}₂ **4** was present in only trace quantity (doublets at ~10 and 27 ppm). The majority of the impurities comprise the resonances between 44 and 47 ppm and are not readily assigned.

Comparison to the System [(Ph₂SiP₂)Pd(THF)₂][OTf]₂. The lack of precedent for the palladaziridines described herein was surprising given their thermal stability and the fact that five- and six-membered palladacycles are rather common.³² To inquire as to whether the choice of the anionic [Ph₂BP₂] phosphine ligand was serendipitous, a palladium system supported by the neutral bis(phosphine) ligand Ph₂Si(CH₂PPh₂)₂ (abbreviated as Ph₂SiP₂) was studied. The ligand Ph₂SiP₂ is a structurally faithful, neutral analogue of [Ph₂BP₂] that gives rise to reaction profiles very similar to the more familiar bis-(diphenylphosphino)propane (dppp) ligand.⁷ The desired precursor complex, (Ph₂SiP₂)Pd(OTf)₂ (**14**), was conveniently prepared in two steps in 87% overall yield by reaction of Ph₂SiP₂ with PdCl₂(NCPh)₂ to generate (Ph₂SiP₂)PdCl₂ (**15**), followed by treatment with 2 equiv of AgOTf to give **14**.

Similar to [[Ph₂BP₂]Pd(THF)₂][OTf] (1), (Ph₂SiP₂)Pd(OTf)₂ (14) coordinated *o*-phenylpyridine in THF but did not effect arylmetalation in the temperature range between 25 and 80 °C. Moreover, like 1, complex 14 is quite reactive toward trialkylamine substrates. Indeed, complex 14 was fully consumed in less than 1 h at room temperature, releasing a stoichiometric equivalent of [HNⁱPr₂Et][OTf] when exposed to just 3 equiv of NⁱPr₂Et in THF. Complete consumption of **1** on a similar time scale requires 20 equiv of NⁱPr₂Et. Despite these promising signs, the major palladium-containing product in the case of 14 is the dimeric palladium(I) complex [{(Ph₂SiP₂)Pd}₂][OTf]₂ (16) (eq 10). A second set of NMR signals (³¹P and ¹³C NMR) was also present, albeit in much lower concentration relative to 16, that may be attributed to $[(Ph_2SiP_2)Pd(N,C:\eta^2-N^iPr_2-$ CHCH₃)[OTf]. The ¹³C NMR spectrum showed a characteristic resonance at 47 ppm, roughly the chemical shift expected for the Pd-bound carbon atom of the iminium ligand. Other tertiary amines provided similar results, but in no case were the secondary reaction products isolated or more thoroughly characterized due to their low concentrations and the difficulty in separating them from dimeric 16. Gentle warming of a solution that presumably contains [(Ph_2SiP_2)Pd(N,C: η^2 -NⁱPr₂CHCH₃)]-[OTf] does not lead to its conversion to 16.

Discussion

Access to the chemistry described herein required a synthetic route to [NBu₄][Ph₂BP₂]Pd(THF)₂][OTf] (1). Starting with [Ph₂-

BP₂] and commercially available (PhCN)₂PdCl₂, complex **1** is readily prepared in three steps and in an overall isolated yield of 67%. The THF and triflate ligands of **1** are highly labile. Consequently, complex **1** reacts as an unsaturated Pd(II) center with two open cis sites. The reactivity of **1** with trialkylamines is marked in its rapidity at room temperature. Moreover, the reaction conditions and workup are fairly general for the various amine substrates examined. The palladacycles are produced cleanly and isolable in high yields (typically 80%). Extremely bulky amines, however, result in lower isolated yields (e.g., 38% yield for [Ph₂BP₂]Pd(N,C: η^2 -NCy₂CHMe) (**8**)). The decreased yields are likely the result of the difficulty in separating the palladacycles from the ammonium salt byproduct due to the decreased solubility associated with the increased rigidity of the more encumbered palladacycles.

The amine activation process is selective for secondary C-H bonds. The bias against tertiary C-H bonds is presumably of steric origin, while the bias against primary C-H bonds is consistent with C-H bond dissociation energies (methylene CH2 < primary CH₃). While the focus of this paper centers on amine activation exclusively, the transformations described may prove to be more general. One clue that this might be the case comes from the curious reaction that converts 1 to 11 upon addition of diisopropyl(2-propenyloxymethyl)amine (eq 3). A mechanistic sequence that would account for this transformation invokes coordination of an O-atom lone pair to Pd(II) followed by a β -hydride elimination step. The oxonium intermediate formed could then rearrange to 11 along with the release of acrolein (Scheme 3). Comparing C-H bond dissociation energies, the allylic C–H bond is expected to be weaker and thus is preferentially cleaved. The proposed scheme is consistent with the observation that acrolein is a byproduct of the reaction.

Reactivity of the Palladacycles. The observation that deuterium can scramble from a deuterated ammonium salt into the aliphatic positions of the neutral palladacycles (see eq 4) suggests that the palladacycles are not static species in solution but are perhaps capable of dynamic β -hydride elimination/olefin reinsertion processes akin to those of cationic palladium alkyl species such as Brookhart's (α -diimine)Pd(alkyl)⁺ systems.³³ As shown in Scheme 4, facile chain walking would allow deuterium to wash into the α - and β -carbon positions, though we must stress that the direct observation of these intermediates has not been realized. Curiously, deuterium does not wash into the γ -carbon position. This discrepancy may arise from differences in the stability of the palladium hydride intermediates

^{(32) (}a) Canty, A. J.; Patel, J.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 2000, 607, 194–202. (b) Dunina, V. V.; Gorunova, O. N.; Averina, E. B.; Grishin, Y. K.; Kuz'mina, L. G.; Howard, J. A. K. J. Organomet. Chem. 2000, 603, 138–151. (c) Ryabov, A. D. Chem. Rev. 1990, 90, 403– 424.

 ^{(33) (}a) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686–6700. (b) Shultz, L. H.; Tempel, D. J.; Brookhart, M. J. Am. Chem. Soc. 2001, 123, 11539–11555.

Scheme 3

that lie along the path leading to deuterium incorporation (Scheme 4). Incorporation of deuterium at the α and β positions is expected to proceed via a palladium enamine hydride species,³⁴ whereas incorporation at the γ position is expected to proceed through a palladium allylamine hydride species. It may be that this latter species is conformationally disfavored, and hence deuterium scrambling traverses exclusively along the lower three paths shown in Scheme 4. It is also plausible to suggest that electronic factors would play a role in destabilizing a Pd allylamine hydride species. In the Pd enamine hydride, the N-atom lone pair should increase the π -basicity of the olefin ligand. This would not be true of an allylamine hydride species.

Although palladium enamine hydride complexes are invoked as plausible intermediates in Scheme 4, they cannot be directly observed. It appears, however, that they can be trapped. For instance, addition of excess *tert*-butylisocyanide to [Ph₂BP₂]- $Pd(N,C:\eta^2-NEt_2CH_2)$ (7) liberates enamine and traps the inferred hydride to generate the complex $[Ph_2BP_2]Pd(C(H)=N^tBu)-(CN^tBu)$ (13) (eq 6).

The reactivity of **7** with NaCN to generate a new C–C bond is consistent with nucleophilic attack of cyanide at an electrophilic iminium ion bound to Pd(0) (eq 7). Though we have not thoroughly explored the reactivity of these palladacycles, it is apparent that the Pd–N–C core shows reactivity consistent with both of its limiting resonance forms: as a Pd(0) iminium adduct (NaCN) and as a Pd(II) alkyl complex with an amine donor (β -hydride elimination, deuterium scrambling).

Mechanism. Three limiting mechanisms for the amine C–H activation process are presented in Scheme 5. Common to each path is an amine adduct of **1**. The amine adduct **A** is designated with a triflate ligand coordinated to palladium, though THF and triflate are likely in rapid exchange in THF solvent. Intermediate **A** presumably rearranges to species **B**, whereby an intramolecular C_{α} –H bond replaces the donor ligand (OTf or THF)

⁽³⁴⁾ A Pd enamine hydride intermediate has been previously proposed, see: Murahashi, S.-I.; Watanabe, T. J. Am. Chem. Soc. 1979, 101, 7429–7430.

Scheme 5

in the site adjacent to the amine donor. At the formal C–H bond-breaking step, the proposed paths diverge. Path I invokes β -hydride elimination to generate the palladium iminium hydride complex C, which is then deprotonated by an exogenous base to give the palladacycle product. Another possibility, path II, suggests that the agostic proton in **B** is directly deprotonated. Alternatively, the agostic C–H bond may undergo oxidative addition to a Pd(IV) alkyl hydride complex **D**, which like **C** is subsequently deprotonated (path III).

Proposed intermediate **B** is common to each of the three paths. While no direct spectroscopic evidence for **B** has been obtained, its intermediacy to either a β -hydride elimination process (path I) or an oxidative addition step (path III) seems reasonable to infer. Moreover, an agostic C–H proton coordinated to a positively charged palladium center should have markedly increased acidity, which would facilitate its direct deprotonation by a Brønsted base (path II). A wealth of mechanistic information has been collected for cationic P₂Pd(II) alkyl complexes by Brookhart and co-workers. In some favorable cases an agostic C–H proton coordinated to a cationic palladium(II) center can be directly observed (e.g., (dippp)Pd(CH₂CH₂- μ -H)⁺).³⁵ The topological analogy between inferred **B** and P₂Pd(R)⁺ systems is apparent (Figure 8).

The spectroscopic observation of an intermediate palladium hydride species at low temperature in d_8 -toluene solution is evidence against path II. A possible counterargument to this assertion is that this intermediate lies along a nonproductive path and is in equilibrium with **B**. If path II is operative, however, then the deprotonation step would have to be rate determining to give rise to the large KDIE observed. The rate law of the reaction would then be expected to show a secondorder dependence on amine concentration, assuming exogenous amine to be the base. Observation of a first-order dependence of rate on amine concentration therefore appears to be incon-

Figure 8. Comparison of proposed intermediate **B** and $(dippp)Pd(CH_2-CH_2-u-H)^+$.

sistent with path II. Moreover, the small magnitude of ΔS^{\ddagger} is inconsistent with a bimolecular rate-limiting step and therefore appears to be incompatible with path II.

Experimentally discriminating between paths I and III is less straightforward. Both paths invoke palladium hydride intermediates, both are expected to exhibit a primary KDIE, and both could exhibit a first-order dependence on amine. The prevalence of β -hydride elimination processes in Pd(II) complexes of similar structure to **B** favors path I. Given the lack of a welldefined Pd(II/IV) redox couple associated with a C–H bond cleavage step, there is no compelling reason to invoke such a scenario here (i.e., path III).³⁶

In the context of path I, the work of Murahashi et al. is relevant. These authors proposed the intermediacy of an η^2 iminium hydride of Pd(II), Pd(H)(RHC=NR¹R²)⁺, in trialkylamine redistribution reactions catalyzed by palladium black at 200 °C.⁵ Formal oxidative insertion of Pd(0) into a secondary C-H bond adjacent to an amine N atom was invoked as the key bond-breaking step. In the present system, we suggest β -hydride elimination from Pd(II) to be the C-H bond-cleaving step. An additional system that appears to be mechanistically related to the present case comes from Harman and co-workers, who provided spectroscopic data to suggest that one-electron reduction of an Os(III) amine complex induces β -hydride elimination to generate an Os(II) η^2 -iminium hydride complex.⁴

The mechanistic data presented here is interesting to compare with that available for Pd-catalyzed alcohol oxidation systems. The KDIE value we report for the amine activation process (5.9) is large by comparison to KDIE's that have been reported elsewhere for catalytic alcohol oxidation (values range between 1.3 and 2.5).^{8b,d,f,g,i} Sigman's group reported a notable exception in which the KDIE for an N-heterocyclic carbene-supported Pd-(II) system was reported to be quite large in magnitude (6.8),^{8c}

 ^{(35) (}a) Ledford, J.; Schultz, C. S.; Gates, D. P.; White, P. S.; DeSimone, J. M.; Brookhart, M. Organometallics 2001, 20, 5266-5276. (b) Shultz, L. H.; Brookhart, M. Organometallics 2001, 20, 3975-3982.

⁽³⁶⁾ For examples of Pt(II/IV) redox couples associated with C-H bond cleavage, see: (a) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1997, 119, 10235. (b) Jensen, M. P.; Wick, D. D.; Reinartz, S.; White, P. S.; Templeton, J. L.; Goldberg, K. I. J. Am. Chem. Soc. 2003, 125, 8614–8624. (c) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37, 2180. (d) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-514.

Scheme 6

and Goldman reported a large KDIE (7) for the catalytic dehydrogenation of tertiary amines by an iridium system.⁶ At present it is difficult to say what isotope-dependent factors collectively contribute to the magnitudes of the various kinetic isotope effects that have been recorded, though this is an interesting topic for further study. While few activation parameters are available for Pd-catalyzed alcohol oxidation, Sigman reported values of $\Delta H^{\ddagger} = 20.25 \pm 0.89$ kcal/mol and $\Delta S^{\ddagger} = -5.4 \pm 2.7$ eu for a sparteine-supported system under conditions where β -hydride elimination is rate determining. These parameters compare favorably with those we report here ($\Delta H^{\ddagger} = 17.9 \pm 0.2$ kcal/mol and $\Delta S^{\ddagger} = -4 \pm 1$ eu).

Rate Law in THF. The proposed mechanism for the amine activation process in THF is represented in Scheme 6 as elementary steps. All steps are drawn as reversible except for the deprotonation step, which appears to be irreversible based upon the lack of overall iminium exchange in the palladacycles (eq 5). Inclusion of intermediate **B** would not alter the rate law and has therefore been excluded.

The following rate law is derived by treating $1 \leftarrow 1'$ as a fast equilibrium with a constant K_{eq} and applying the steady-state approximation to intermediates A and C:

rate =

$$\frac{K_{eq}k_1k_2k_3[\mathbf{1}][\mathbf{N}^{i}\mathbf{Pr}_2\mathbf{Et}]^2}{k_{-1}k_3[\mathbf{THF}]^2[\mathbf{N}^{i}\mathbf{Pr}_2\mathbf{Et}] + k_{-1}k_{-2}[\mathbf{THF}]^2 + k_2k_3[\mathbf{N}^{i}\mathbf{Pr}_2\mathbf{Et}][\mathbf{THF}]}$$
(11)

In the limit where THF is in vast excess and $k_3[N^iPr_2Et] \gg k_{-2}$, the rate equation simplifies to

rate =
$$\frac{K_{eq}k_1k_2[1][N^{i}Pr_2Et]}{k_{-1}[THF]^2}$$
 and
 $k_{obs} = \frac{K_{eq}k_1k_2[N^{i}Pr_2Et]}{k_{-1}[THF]^2}$ (12)

The reduced rate law is in agreement with the experimental data wherein the reaction rate is first order in both [NⁱPr₂Et] and [1]. Moreover, the rate law can be applied to the kinetic studies performed in THF with 20-fold amine for which k_{obs} was measured. The rate constant k' ($k' = K_{eq}k_1k_2/k_{-1}$) comprises two equilibrium constants and the rate of the β -hydride elimination step (k_2). Future studies would be needed to ascertain K_{eq} and k_1/k_{-1} and to obtain a value for k_2 . Reports of the isolated rate

Table 2. Summary of Observations for Various Reaction Conditions

	interme	ediates	crude product distribution ^a		
	А	С	palladacycle	${[PhBP_2]Pd}_2(4)$	
THF, 23 °C oluene/benzene, 23 °C oluene, -20 °C	observed	observed	quantitative minor major	major trace	

^a On the basis of ³¹P NMR spectroscopy.

t

constants for β -hydride elimination steps are few in number. The most related case is Harman's osmium system, which is reported to undergo β -hydride elimination at a rate of 6×10^{-2} s⁻¹ at 25 °C.⁴ The rate constant *k*' reported here ($k' = 5.6(1) \times 10^{-2}$ s⁻¹) is of similar magnitude.

Reaction Profile as a Function of Solvent and Temperature. The reaction profile changes dramatically upon varying the solvent and temperature (Table 2). The variation in product distribution between low and ambient temperatures in toluene may suggest that ${[PhBP_2]Pd}_2$ (4) is the thermodynamic product and that the palladacycles are the kinetic products. Nonetheless, the palladacycles are thermally quite stable. They show no proclivity to convert to 4 at high temperatures upon isolation (up to 90 °C). We presume that complex 4, like the palladacycles, is formed from the Pd iminium hydride intermediate (C). Owing to the low polarity of toluene, the transition state for deprotonation of C must be sufficiently raised that the competitive loss of iminium triflate dominates the reaction profile. Such a step would generate "[Ph₂BP₂]PdH", which in the absence of a strong donor is known to be quite unstable and leads to the generation of $\{[Ph_2BP_2]Pd\}_2$ (4).²¹ For the case of the more polar solvent THF, the barrier to deprotonation is presumably very low relative to the barrier for iminium dissociation. Consequently, complex 1 funnels cleanly into the palladacycle product in THF. In toluene, intermediates A and **C** appear to be in equilibrium. In this case, β -hydride elimination *cannot* be rate limiting.³⁷ Instead, deprotonation becomes both rate limiting and product determining in toluene.

Reaction Profile as a Function of Charge on Palladium. Solvent is not the only factor contributing to the observed product distribution. The electrophilicity of the palladium species also seems to play a role in determining how competitive iminium release from intermediate C will be relative to deprotonation. For example, when $(Ph_2SiP_2)Pd(OTf)_2$ 14, the (Ph₂SiP₂)-supported analogue of **1**, is exposed to NⁱPr₂Et, an analogous Pd iminium hydride intermediate may be invoked, but the iminium ligand is presumably more labile in this case. Thus, a pathway leading to a dimeric Pd(I) product, [(Ph2SiP2)-Pd]₂[OTf]₂ **16**, would be favored. Several previous studies have shown that the anionic [Ph₂BP₂] ligand is appreciably more electron releasing than (Ph₂SiP₂).^{7,21} It is therefore reasonable to anticipate that a π -bonded iminium ligand in the adduct complex, $[(Ph_2SiP_2)Pd(H)(R_2N=CHCH_3)]^{2+}$, would be more labile than such a ligand in the complex $[[Ph_2BP_2]Pd(H)(R_2N=$ $CHCH_3$]⁺ (C). The anionic charge of the [Ph₂BP₂] chelate thus appears to play an important role with respect to the generation of these unusual palladacycle species.

⁽³⁷⁾ We studied the product distribution for the reaction of 1 and Et₂NCD₂CD₃ in toluene to obtain a KIE of 2.0. This primary KIE does not help to establish whether β-hydride elimination is rate determining in toluene. For instance, a primary KIE would also be consistent with deprotonation of the Pd-H as the rate-limiting step.

In summary, iminium adducts of palladium supported by a bis(phosphino)borate ligand are readily generated from β -hydride elimination of amines at a coordinatively unsaturated Pd-(II) center. It is rare to isolate or even observe intermediates relevant to the in situ reduction of Pd(II) by amines or the Pd-(II)-catalyzed oxidation of alcohols. Thus, the isolable Pd(0)-iminium adducts and the mechanistic observations accompanying this study may provide important mechanistic information regarding the nature of these processes. Moreover, this study also alludes to an attractive opportunity for incorporating Pd-(II) species in the presence of an oxidant within the broader synthetic context of new methods for the catalytic functionalization of tertiary amines.

Acknowledgment. This work was supported by the NSF (CHE-0132216), the ACS Petroleum Research Fund, and the Dreyfus Foundation. The authors thank Theodore Betley, Larry Henling, and Dr. Michael Day for crystallographic assistance. C.C.L. thanks the Department of Defense for a Graduate Research Fellowship.

Supporting Information Available: Complete crystallographic details for 1', 5, 8, and 9 (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA046415S